
Evolution of Geometric Sensitivity Derivatives

from Computer Aided Design Models

William T. Jones∗

NASA Langley Research Center, Hampton, VA 23681-2199

David Lazzara† and Robert Haimes‡

Massachusetts Institute of Technology, Cambridge, MA 02139

The generation of design parameter sensitivity derivatives is required for gradient-based
optimization. Such sensitivity derivatives are elusive at best when working with geometry
defined within the solid modeling context of Computer-Aided Design (CAD) systems. Solid
modeling CAD systems are often proprietary and always complex, thereby necessitating ad
hoc procedures to infer parameter sensitivity. A new perspective is presented that makes
direct use of the hierarchical associativity of CAD features to trace their evolution and
thereby track design parameter sensitivity. In contrast to ad hoc methods, this method
provides a more concise procedure following the model design intent and determining the
sensitivity of CAD geometry directly to its respective defining parameters.

Nomenclature

R Set of real numbers
Ω Set of features
E Set of edges
F Set of faces
L Set of loops
N Set of nodes
P Set of parameters
R Set of discretized vertices
~e Edge position vector
~q Node position vector
~r Face position vector
nΩ Number of features
nE Number of edges
nF Number of faces
nl Number of faces/edges incident to node l
nN Number of nodes
np Number of parameters
nLj Number of loops for face Fj

t Edge parameter
u Tensor product surface parameter
v Tensor product surface parameter

Subscripts

α Left face index incident to edge
β Right face index incident to edge
η Face index indident to node
i Range index
j Face index
k Edge index
l Node index
w Parameter index

Symbols

ε0 Machine zero
εtol Model tolerance
∇̂ Edge gradient
µ Edge velocity
∇ Surface gradient
ν Surface velocity
‖ ‖ L2 norm

Superscripts

′ Perturbed model instance
∗Computer Engineer, Computational AeroSciences Branch, Senior Member AIAA
†PhD Candidate, Department of Aeronautics and Astronautics, Member AIAA
‡Principal Research Engineer, Department of Aeronautics and Astronautics, Senior Member AIAA

1 of 23

American Institute of Aeronautics and Astronautics

13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference
13 - 15 September 2010, Fort Worth, Texas

AIAA 2010-9128

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

I. Introduction

Geometry management is an essential component of any Multidisciplinary Design Analysis and Opti-
mization (MDAO) environment, particularly if high-fidelity analysis tools are employed. When using a

gradient-based optimization scheme, a key challenge is obtaining the necessary measure of the sensitivity of
the geometric shape to the design parameters.

When tuning a given design variable (or set of variables) P to optimize a given output function L,
gradient-based optimization requires the sensitivity of L to changes in P , ∂L/∂P . The chain rule of differen-
tiation can be applied to obtain ∂L/∂P as a composite of the individual components of the overall analysis.
Therefore, each component of the analysis must provide the sensitivity of its output with respect to its
inputs. For example, a three dimensional Computational Fluid Dynamics (CFD) analysis which produces
some aerodynamic quantities of interest (e.g. lift, drag, etc.) must provide the sensitivity of these quantities
with respect to the design variables of interest. Using the chain rule, the sensitivity of the aerodynamic
quantities L to the design variable P can be viewed as,

∂L

∂P
=
∂L

∂V

∂V

∂B

∂B

∂G

∂G

∂P
(1)

where the aerodynamic quantities L are computed on the input volume mesh V ; V is constructed subject to
a boundary mesh B; B depends on the surface geometry G; and finally G is defined by the design variables
P .

Each of the analysis component derivatives can be constructed by differentiating the respective process
(solver, mesh generator, etc.). Typically, this is accomplished by differentiating the respective tools by
hand,1 by using automatic differentiation tools,2–6 or by the use of complex variables.7 However, the geo-
metric sensitivity derivatives, ∂G/∂P are elusive when the use of geometry defined by complex and often
proprietary Computer-Aided Design (CAD) software is desired. With proprietary systems, software source
code is unavailable and therefore differentiation of the source is not possible. Even when source is available,
differentiation of said source proves impractical. For example, the very capable OpenCASCADE8 software
development platform for 3D CAD is available in open source. However, this object oriented library has
at present more than 14,000 classes, making differentiation a daunting task. As a result, most research
has focused on the development of ad hoc procedures to circumvent the problems associated with obtaining
sensitivity derivatives from CAD software.

One family of approaches focuses on the construction of surrogate geometry representations that seek to
approximate the model with newly defined parameters and known construction entities whereby the construc-
tion can be differentiated to produce sensitivity. Free form deformation methods9,10 have been applied to a
variety of shape design problems with success.11,12 Commercial tools such as SculptorTMprovide arbitrary
shape deformation of the discrete analysis mesh to bypass the geometry model. While useful, these tools
present new challenges such as: introducing a disconnect from the intended CAD design parameters; and the
inability to realize the final design in a CAD environment (manufacturing, Product Lifecycle Management,
etc).

Other techniques have employed finite-differencing of distinct CAD model instances to define sensitivity
derivatives.13–15 These methods are not only costly, but involve an assortment of challenges related to
the proper definition of step size on finite precision computers. The cost is primarily associated with the
potentially large number of instances of the geometry model that need to be generated. An instance of the
geometry corresponding to the perturbation of each design parameter must be generated to serve in the
finite-difference calculation of the sensitivity derivatives. Therefore, the cost of the sensitivity evaluation is
directly proportional to the number of design variables. To mitigate the cost, a farm of CAD kernels can be
run concurrently during the production of sensitivity derivatives.13,15 One can imagine that this technique
does not scale well as the number of design variables can largely outweigh the number of available CAD
seats. More distressing is the selection of the appropriate design parameter perturbation step size. A step
size for each parameter used in the finite-difference calculation must be chosen that will produce a small but
significant change in the dependent geometry. As with any finite-difference calculation, the local truncation
error is proportional to the step size so the step size must be small. However, the step size cannot be
arbitrarily small as finite precision arithmetic will introduce error into the resulting sensitivity derivatives.
To further complicate matters, a relevant step size must be chosen for each design parameter.

2 of 23

American Institute of Aeronautics and Astronautics

The finite-difference approach also poses a challenge in that the topology of the discretization (i.e. the
number and connectivity of discrete vertices associated with each face and edge of the model) needs to remain
unchanged in order for sensitivity information to be calculated at the vertices via divided difference. If, for
example, model perturbations cause relative design motion of edges across a face and existing vertices on the
face become occluded in the model interior, then a change in discretization topology occurs. This is often
remedied by rescaling the position of vertices to adhere to the bounds of the newly defined face and preserve
the discretization topology. However, it can be shown that such action is equivalent to artificially prescribing
a design velocity to vertices which has no dependence on the perturbed driving parameter. Even worse is
the situation when faces, edges or nodes cease to exist (or are added) after a model is regenerated. This
often occurs when the geometry kernel enforces the underlying geometry to be closed for the new instance.
Such a lack of consistency in the discrete representation of model instances presents yet another challenge
to the finite-difference approach to sensitivity evaluation.

When a designer uses a feature-based CAD system to construct a geometry model, objects are represented
as a collection of features which are constructed by following a hierarchical build recipe known as a feature-
tree. In general the feature-tree is non-unique and is driven by a collection of parameters that size the
model. The feature-tree along with the parameter space can be combined into the concept of a master-model
representing an abstraction of the model. The CAD system processes the feature-tree and parameters within
the master-model to define a specific instance of the model. It is the individual instance that is the subject
of analysis while it is the master-model, along with its sensitivity to changes in the parameter space, that is
the subject of optimization.

Each instance of the master-model results in a Boundary Representation (BRep). The BRep contains the
geometric curves and surfaces that are functions of the parameters. The BRep also includes a model topology
which collects the geometric entities into faces, loops, edges, and nodes and provides their connectivity
information. The topology is directly related to both the design intent of the feature-tree and the construction
methods of the underlying CAD system. Topological entities are driven explicitly by the design parameters
or implicitly by construction operations. Therefore, analysis and optimization depends on information in
the master-model parameter space as well as the BRep topology and gradient-based optimization requires
the sensitivity of the model topology to the driving parameters.

To directly utilize the master-model within a gradient-based optimization context, one could imagine
differentiating through the CAD system to directly obtain the geometric sensitivity to the parameters, but
this is not possible for reasons cited above. However, an alternate approach is presented herein which makes
direct use of the hierarchical associativity of the CAD features in a BRep to trace their evolution and thereby
track sensitivity to design parameters. In the following sections we: detail the connectivity of the master-
model; include a description of the infrastructure which supports the approach; describe the associativity
of the driving parameters and feature components; discuss the development of sensitivity derivatives of the
constituent components of a BRep; and provide example applications of the technique.

II. Master-Model Topological Connectivity

Consider a master-model containing a set of constructed features Ω = {Ωi} (i = 1, . . . , nΩ) represented
by a BRep topology consisting of a global listing of faces, edges, and nodes:

Faces F → {Fj} for j = 1, . . . , nF

Edges E → {Ek} for k = 1, . . . , nE

Nodes N → {Nl} for l = 1, . . . , nN ,

where the number of faces, edges, and nodes in the BRep are represented by nF , nE , and nN respectively.
Also, each face is bound by one or more loops of edges. Each face has a local loop set Lj with nLj loops
numbered from 1 to nLj :

Loops L → {Lj,m} for j = 1, . . . , nF m = 1, . . . , nLj .

Each feature contains a list of its constituent faces FΩ ⊂ F. For feature Ωi, we define the associated topology
tree in hierarchical fashion; however, sets of faces, edges, and nodes also contain connectivity.

When looping over the feature set Ω, the topology tree is traversed by looping over the face indices in
FΩ; each face branches to multiple loop indices in a set LF; each loop index also branches to multiple edge
indices in a set ELF

⊂ E; all edge indices then branch to two node indices in a set NELF
⊂ N.

3 of 23

American Institute of Aeronautics and Astronautics

Looping over the sets F, E, or N yields connectivity information in a different manner. Each face Fj ∈ F
points to a single feature index, ΩFj ∈ Ω which has a topology tree that expands as described for the feature
set above. From the view of edges, the faces that intersect along edge Ek have indices stored in FEk

⊂ F
and the end-point node indices are contained in NEk

⊂ N (both subsets have a cardinality of 2 as the BRep
is assumed manifold). Finally, from the perspective of nodes, the faces and edges that are coincident to node
Nl have indices stored in a set FNl

⊂ F and ENl
⊂ E, respectively (the cardinalities of FNl

and ENl
are

equal and represent the number of faces/edges incident to the node Nl which we denote nl). In general each
node in the BRep is constructed from a different number of intersecting faces/edges.

III. CAPRI

The current method is implemented within the Computational Analysis and Programming Interface
(CAPRI).16–18 CAPRI provides a vendor-neutral access point into CAD and can be used as the geometric
foundation in any framework. This is accomplished by providing a unifying and simplifying Application
Programming Interface (API) into CAD that also includes the ability to regenerate components via traversal
of the feature-tree defined using the master-model concept.

The CAPRI API offers a layer of abstraction from the specific methods of a given CAD kernel API while
ultimately utilizing the original system to access the subject geometry. The API provides the operations
that are common across the supported systems and provides for interrogation, data tagging, the creation of
solid primitives, parameter modification, and model regeneration. By using the CAPRI API, an application
is seamlessly integrated into all of the supported CAD systems without the need for software modification.
CAPRI operations are generally restricted to manifold solid geometry, such as that defined by most modern
CAD systems, and as such provides a closed topological description of the domain of interest. CAPRI also
provides a closed tessellation19,20 of the subject part that may be used to ensure physical consistency of the
model. Most important to this work, CAPRI exposes the underlying feature-tree and associated parameter
space defining the master-model in a concise neutral way. Therefore all of the geometric and topological
information, as well as the parametric associativity, that are required for automated interrogation and
regeneration of a CAD solid model is available to applications which employ the CAPRI API.

IV. Master-Model Associativity of Features and Driving Parameters

In order to determine the sensitivity of model topology to the parameters P = {Pw} (w = 1, . . . , nP) in
the master-model, it is necessary to determine the associativity between those driving parameters and the
surfaces (trimmed to form faces) resulting from each feature. For example, Figure 1(a) contains a sketch
with four entities (highlighted as thick black lines) used to create a revolve feature (shown with shaded
faces). The entities in the sketch are: a vertical centerline reference; a vertical line segment; a horizontal line
segment; and a diagonal line segment. The three line segments define a closed profile that defines the cone
geometry when revolved about the vertical reference. The driving parameters for the line segments are the
cone half-angle, θ, and height, h.

When a revolve geometry operator is applied to this sketch (thus creating a revolution feature), the
CAD system’s geometry kernel determines from the profile that a cone surface and a planar surface are the
resulting geometry. The geometry kernel uses intersection algorithms to trim these surfaces according to the
extent of the sketch entities and the cone BRep is created. Therefore, for the revolve feature in Figure 1(a)
the planar surface is associated with the horizontal line segment and the cone surface is associated with
the diagonal line segment. Furthermore, the angle and height parameters are associated with both surfaces
through the line-surface associativity. When an additional planar cut-feature is introduced into the feature-
tree, the model in Figure 1(b) results by regenerating the master-model. An additional distance parameter
d drives the new planar surface. The resulting BRep topology for the new model is shown in Figure 1(c)
(note that periodic cone surface is split resulting in an additional node and corresponding edge splits).

An additional associativity connection is made between the edges and nodes bounding each face to the
underlying trimmed surface for that face. In the case of Figure 1, the angle and height parameters are
associated with the cone and horizontal-plane surface and the distance parameter drives the vertical plane
surface. Furthermore, the cone and planar surfaces in this example are defined by the geometry kernel using
classical surface parameterizations:

4 of 23

American Institute of Aeronautics and Astronautics

(a) (b) (c)

Figure 1. (a) Sketch entities are piecewise continuous and driven by parameters, such as the cone angle and height in
this case. The CAD geometry kernel processes the feature-tree containing the sketch entities and generates associated
surfaces for the feature. (b) Adding a cut-operator with a planar face results in a new model instance and an additional
parameter. (c) The final model topology shows edges (lines) and nodes (circles) bounding the geometry surfaces
generated from these features.

Vertical Plane: ~rp = ~op +

 0
vp − 1/2

up

Cone: ~rc = ~oc +

 vc tan(θ) cos(uc)
vc tan(θ) sin(uc)

hvc

where ~op = [d, 0, 0]T is the relative plane origin and ~oc = [0, 0, 0]T is the relative cone origin. We also
presume a global reference frame with an origin at ~o0 = [0, 0, 0]T . In this example each surface is mapped
to its own two-dimensional tensor product space with the corresponding coordinates u and v.

The driving parameters in the master-model must be associated to the corresponding parameters in the
surface equations (in an automated fashion) resulting in a surface definition of the form ~r = ~r(u, v;Ps) where
Ps ⊂ P. Once this is established, a complete associativity chain results that links driving parameters from
a sketch to the resulting construction of trimmed-surfaces in every feature of the model.

Unfortunately, across CAD systems there is no consistency in Features nor in the potential geometry
emitted for the Feature. There are some CAD systems that produce a limited suite of surface types and
have documented parameterizations, whereas there are others that require reverse engineering. Even though
in practice there exists a finite number of surface types, this presents the potential for an extraordinary
amount of work as CAD systems can have numerous features and each may need to be analyzed in order to
generate ~r(u, v;Ps). However, the problem is tractable and can be built up incrementally on an as-needed
basis. We do not provide this exhaustive list of support here, but instead provide the basis upon which a
proof-of-concept can be demonstrated.

Thus far we have the design parameters in the master-model associated with the surface parameters
used to generate each feature face. Since the edges and nodes in the BRep topology essentially “sit on” each
surface used to construct the model (within a tolerance), it is clear that the model topology sensitivity to the
driving parameters will depend on the sensitivity of the underlying surfaces to those parameters. Therefore,
symbolic differentiation of each surface ~r(u, v;Ps) to these parameters is needed.

For implementation, we rewrite the known surface equations replacing the surface parameters with han-
dles to the driving dimensions or other equations in the master-model. The new symbolic representation for
these surface equations is then symbolically differentiated and evaluated. In the cone example, we require
evaluation of the following non-zero symbolic derivatives:

5 of 23

American Institute of Aeronautics and Astronautics

Vertical Plane

 ∂~rp

∂up
=

 0
0
1

 , ∂~rp

∂vp
=

 0
1
0

 , ∂~rp

∂d
=

 1
0
0

Cone

∂~rc

∂uc
=

 −vc tan(θ) sin(uc)
vc tan(θ) cos(uc)

0

 , ∂~rc

∂vc
=

 tan(θ) cos(uc)
tan(θ) sin(uc)

h

 , ∂~rc

∂θ
=

 vc sec2(θ) cos(uc)
vc sec2(θ) sin(uc)

0

 ,

∂~rc

∂h
=

 0
0
vc

These same steps are required for any surface representation used by the CAD geometry kernel to construct
a given feature. Certainly the collection is large with numerous surface types, however, the process is
repeatable. Even complicated surface types such as Non-Uniform Rational B-Splines (NURBS) can be
handled in a similar manner by tracking associativity through their control points and knot vectors, for
example.

V. Sensitivity of Model Topology

The model sensitivity to design parameters refers to the sensitivity of all faces, edges, and nodes in the
BRep to a change in any driving parameter in the master-model. Since each face and edge is defined as
continuous geometry, sensitivity information can be obtained by evaluating these entities at points anywhere
in their domain; yet, in many applications the model topology is discretized, and sensitivity information
is required at known discrete points on the faces and edges (nodes are discrete points by definition). In
taking this view, the sensitivity method below is considered for sets of vertices on each topological entity
even though it applies to any point evaluated in their domain.

We start the discussion of sensitivity generation with the sensitivity of faces of the BRep. Lower di-
mensional entities (edges and nodes) surprisingly introduce additional complications. Therefore, we will
incrementally build up the discussion starting from the most straightforward entity.

V.A. Topology Parameterization

The CAPRI interface upon which the current work is based provides the ability to trace each face of the
BRep back to its owning feature and also provides an association between parameters and features. Thus it
is possible to also trace the face to its defining master-model parameters, P.

We will consider a Euclidean space with origin ~o0 and write the surface parameterization for face Fj

using ~rj ∈ R3 as

~rj = ~rj(uj , vj ;Pj). (2)

where uj and vj again represent the coordinates of the two-dimensional tensor product space mapping of
face Fj .

Parameters are considered from two vantage points: the perspective of the specific entity derived from
the parameter; and the perspective of the entire model. From the view of a face, we list the parameters used
in generating the underlying surface of face Fj in the set Pj = {Pi} for i = 1, . . . , nPj (note that nPj , or the
number of parameters used to generate Fj , is in general different for each face). From the perspective of the
entire parameter space in the master-model, the collection of parameters used in the entire model will here
be denoted as P = P1 ∪P2 ∪ . . . ∪PnF

= {Pi} for i = 1, . . . , nP ≤
∑nF

j=1 nPj (here we utilize an inequality
because some surfaces may share common parameters, which are not repeated in P). Each of the parameters
in P may be stand-alone values that drive the model construction, although any parameter may instead be
driven by a relation defined in the master-model equation set or by some equation defined external to the
master-model (e.g. discipline-specific expression, assembly relations, etc.).

6 of 23

American Institute of Aeronautics and Astronautics

The parameterization for an edge is usually not directly obtained from the CAD geometry kernel because
it is constructed by surface intersection algorithms (often as cubic B-splines). Therefore, by using ~ek ∈ R3,
edge Ek is assumed to have a parameterization

~ek = ~ek(tk;Pk) (3)

on the domain Tk = [tkmin , tkmax] ∈ R with coordinate tk ∈ Tk. Since the edge is a construction from two
intersecting surfaces, its driving parameter set is Pk = Pα ∪ Pβ = {Pi} with i = 1, . . . , nPk

≤ nPα + nPβ
,

here Pα and Pβ are the parameter sets for faces Fα and Fβ (α, β ∈ [1, nF]) which are incident to edge Ek.
The value of nPk

may be less than nPα + nPβ
when both surfaces share a common parameter.

Nodes, in general, are also generated without an output parameterization from the intersection algorithms
of the geometry kernel. However, since the node is an artifact of intersecting surfaces, we can define a
parameterization for node ~ql ∈ R3 as

~ql = ~ql (~rj ;Pl) , (4)

where the position vector ~rj follows from Eq. (2) for face Fj ∈ FNl
⊂ F contributing to the node ~ql. The

subset of parameters that drive the node are Pl =
⋃nl

j=1 Pj = {Pi} for i = 1, . . . , nPl
≤

∑nl

j=1 nPj
. Here

nPl
represents the number of parameters which define node l and nPj represents the number of parameters

defining face Fj .

V.B. Face Dependency on Design Parameters

The sensitivity of points on a face to parameters is the simplest to compute. Suppose face Fj is discretized
by a set of vertices in the set Rj . A subset of vertices are on the bounding edges of the face (designated as
“points on an edge”), say Rj,edge ⊂ Rj , another subset of vertices, Rj,node ⊂ Rj , are at the intersection of
bounding edges (these points are designated as “nodes” because they match nodes from the BRep topology
description), while the remainder are on the face interior (we designate these as “points on the face”). In
general, at any point ~rj ∈ Rj evaluated on the interior, bounding edge, or node on a face we can write the
derivative of the vertex position with respect to a parameter Pi ∈ Pj driving the face as

d

dPi
(~rj) =

d~rj

dPi

=
(
∂~rj

∂uj

∂uj

∂Pi
+
∂~rj

∂vj

∂vj

∂Pi
+
∂~rj

∂Pi

)
. (5)

The terms ∂~rj

∂uj
and ∂~rj

∂vj
in Eq. (5) are readily obtained from the CAD geometry kernel as directional derivatives

on the face. The ∂~rj

∂Pi
term, however, is obtained solely by symbolically differentiating the surface definition

with respect to Pi and evaluating. The two scalar multipliers, ∂uj

∂Pi
and ∂vj

∂Pi
, are unknown in general. These

terms correspond to a relative design motion in the domain of the face.

V.B.1. Points on the Face

For vertices that are not in any subset Rj,edge or Rj,node on face Fj , we find that Eq. (5) simplifies because
∂uj

∂Pi
= 0 and ∂vj

∂Pi
= 0, giving

d~rj

dPi
=
∂~rj

∂Pi
. (6)

This implies, from a geometry perturbation perspective, that the points on the face interior show no
relative design motion along the surface when a driving parameter Pi is perturbed. It also highlights, in the
context of finite-differencing schemes, why rescaling vertices to fit within the bounds of the entity prescribes
an artificial design velocity that does not reflect the true design motion of the underlying model. An exception
to this occurs for faces constructed from a NURBS, bicubic spline, or other free-form representation of a
surface, where parameters are often the coordinates of domain grid points themselves and relative motion is
possible.

7 of 23

American Institute of Aeronautics and Astronautics

V.B.2. Points on an Edge

For faces defined by non-free-form surfaces, relative design motion may indeed be present for vertices ~rj ∈
Rj,edge of face Fj . This can occur when perturbing the parameter Pi causes a displacement of an edge
relative to the baseline surface after regeneration such as when the parameter change modifies an adjacent
face. Thus, we can rewrite Eq. (5) to highlight the two terms that contribute to the total design motion of
an edge:

d~rj

dPi
=

(
∂~rj

∂Pi
+∇~rj · ~ν

)
(7)

where ~ν =
[

∂uj

∂Pi
,

∂vj

∂Pi

]T

and ∇ ≡
[

∂
∂uj

, ∂
∂vj

]
. If we consider parameter Pi as continuous in [Pimin , Pimax], then

it is analogous to a “design time” over which the model follows a design trajectory of different instances.
This implies a velocity ν in the R2 tensor product space that is projected into the space R3 by ∇~rj . It is
this velocity that contributes to relative design motion of an edge with respect to a surface. In addition,
Eq. (7) can be analogously interpreted from a continuum mechanics perspective, where the edge is displaced
first by a term denoting “time variation” of the surface, or design motion of the entire surface, and a second
“convective” term representing a relative velocity, or design motion relative to the surface at the point ~rj .

V.B.3. Point at a Node

Faces defined by non-free-form surfaces can also exhibit a relative design velocity at nodes as well. This
occurs when a perturbation causes design motion of intersecting bounding edges on a face. We can apply
Eq. (7) at the node position to determine the relative design velocity of the node with respect to the face.

V.C. Trim Curve Dependence on Driving Parameters

In deriving a method for edge sensitivity to driving parameters, we will consider the intersection trim curve
Ek constructed from faces Fα and Fβ (α, β ∈ [1, nF], α 6= β). We may proceed by considering any point
along the trim curve domain or a set of vertices in the domain that results from a discretization of the trim
curve. In taking the latter view, we suppose that Fα, Fβ , and Ek are discretized, where the sets of vertices
associated to each face are written as Rα and Rβ . Along Ek we also have a set of vertices written as Rk.
At any point ~ek ∈ Rk, the derivative of the vertex position with respect to the parameter Pi ∈ Pk is

d

dPi
(~ek) =

d~ek

dPi

=
(
∂~ek

∂tk

∂tk
∂Pi

+
∂~ek

∂Pi

)
(8)

The term ∂~e
∂tk

in Eq. (8) is obtainable from the CAD geometry kernel as the local tangent to the trim
curve. The remaining terms in Eq. (8) are unknown since the parameterization of the trim curve, which
would contain the dependence on the driving parameters Pk, is not provided as an output from intersection
algorithms. This expression is defined over a 1D domain Tk and is similar to that for faces in Eq. (5) defined
over a 2D tensor product space, thus the two terms in Eq. (8) correspond to different contributions for design
motion of a trim curve. We can rewrite Eq. (8) as

d~ek

dPi
=

(
∂~ek

∂Pi
+ ∇̂~ek · µ

)
(9)

where µ = [∂tk

∂Pi
] and ∇̂ = [∂

∂tk
]. We again consider the driving parameter to be continuous over some range

[Pimin , Pimax] and act as a design time. In this 1D case, the “time varying” term ∂~ek

∂Pi
refers to the design

motion of the entire trim curve and the second “convective” term refers to the relative design motion with
respect to the original curve (here the relative velocity µ is projected into the space R3 by ∇̂~ek). In other
words, the unknown µ is seen as the dependence of position on the curve with respect to parameters because
the domain coordinate tk is usually expressed as a percentage of total curve length.

8 of 23

American Institute of Aeronautics and Astronautics

V.D. Node Dependence on Driving Parameters

Consider the node Nl ∈ N with coordinates ~ql. Despite not having a parameterization, we know that the
node will have no relative design velocity with respect to itself. Thus we can use Eqs. (7) and (9) as a
template with zero relative velocity to specify

d~ql

dPi
=
∂~ql

∂Pi
. (10)

From a geometric perspective, the total sensitivity of a node to a parameter is entirely defined by the “time
varying” dependence of the node to design time over the continuous parameter range [Pimin , Pimax].

V.E. Parameter Sensitivity on Edges with Minimum Velocity Method

From an analytic geometry perspective, the set of intersection for two surfaces will have the exact spatial
coordinates as points on the trim curve, implying Rk = Rα ∩Rβ for vertices obtained after discretization
of the face and edge. Another way of writing this for an element ~ek ∈ Rk is ~ek ∈ Rα and ~ek ∈ Rβ , which
leads to the following equations that hold at the point ~ek ∈ Rk:

~rα −~rβ = 0
~rα − ~ek = 0 (11)
~rβ − ~ek = 0

where ~rα and ~rβ represent the closest points on edge k to the faces α and β respectively, ~rα ∈ Rα, and
~rβ ∈ Rβ . Although the three equations in Eq. (11) appear redundant, they represent the view of a point in
Euclidean space R3 as determined by three different parameterizations: ~rα(uα, vα;Pα), ~rβ(uβ , vβ ;Pβ) and
~ek(tk;Pk).

Due to the trimming algorithms undertaken by a geometry kernel, a BRep may identify a trim curve as
the intersection of two surfaces even though the trim curve itself is not part of either surface (this occurs in
consequence of using Newton’s method in finding intersection points and tracing). This implies that each
surface and trim curve are “intersecting” within a proximity tolerance (defined internal to the geometry
kernel). Although this numerical geometry situation is different from the perspective of analytic geometry,
the numerical implementation of trimming algorithms are susceptible to machine precision roundoff-error,
ε0. The proximity tolerance set within geometry kernels may be larger than machine precision as well (to
improve computational efficiency of trimming algorithms) and is here denoted εtol ≥ ε0.

In the context of numerical geometry, our analytic constraint equations in Eq. (11) thus become

~rα −~rβ = ~ε1

~rα − ~ek = ~ε2 (12)
~rβ − ~ek = ~ε3.

where ~ε1, ~ε2 and ~ε3 are the offsets reached when the intersection search algorithm terminates its Newton
method and ‖ ~ε1 ‖, ‖ ~ε2 ‖, ‖ ~ε3 ‖≤ εtol. This indicates that the set of intersection points Rk has the property
Rk 6= Rα ∩ Rβ . A BRep generated after surface trimming will define the faces Rα and Rβ (each with
adjacent edges Rα,edge ⊂ Rα and Rβ,edge ⊂ Rβ , respectively) along with the trim curve Rk. These three
BRep entities have a relative proximity that is within a ball B of radius εtol around each point in Rk for
the nearest points in Rα,edge and Rβ,edge. In this light, the constraint equations in Eq. (12) are similar, but
not exactly redundant, and still represent the view of a surface-surface intersection from the perspective of
three parameterizations. This approach ensures that all of the local information from the topology is used
in deriving a sensitivity methodology. At a minimum, the first relation in Eq. (12) would suffice because the
CAD geometry kernel employs information from the intersecting surfaces to construct the trim curve. Using
all of the local topology information is consistent with the feature construction and allows for more insight
into the edge displacement relative to its initial construction.

We further note that since Eq. (12) is not exact, we must obtain some point ~rα at a (uα, vα) that
minimizes ‖ ~rα −~ek ‖; similarly, we must do the same on face Fβ and determine some point ~rβ at a (uβ , vβ)

9 of 23

American Institute of Aeronautics and Astronautics

that minimizes ‖ ~rβ −~ek ‖. By providing the vertex coordinates of ~ek, the CAD geometry kernel can return
the points ~rα and ~rβ (including directional derivative information at these points) on faces Fα and Fβ ,
respectively, that are nearest to ~ek.

A variational analysis can be conducted to determine the sensitivity of vertices on faces and trim curves
to those parameters Pw ∈ P which are also found in either Pα, Pβ , or both. We note here that it may be
possible that εtol = εtol(Pw), yet an expression for this could only be arbitrarily specified since access to the
CAD geometry kernel source code is usually not available. Thus, we assume that εtol 6= εtol(Pw), as if εtol

were a constant value set in the geometry kernel. We consider a Taylor expansion around ~rα, ~rβ and ~ek by
writing

~rα(uα, vα;Pw + ∆Pw)′h = ~rα(uα, vα;Pw) +
d~rα

dPw
∆Pw +

1
2
d2~rα

dP 2
w

∆P 2
w + · · ·

~rβ(uβ , vβ ;Pw + ∆Pw)′ = ~rβ(uβ , vβ ;Pw) +
d~rβ

dPw
∆Pw +

1
2
d2~rβ

dP 2
w

∆P 2
w + · · · (13)

~ek(tk;Pw + ∆Pw)′ = ~ek(tk;Pw) +
d~ek

dPw
∆Pw +

1
2
d2~ek

dP 2
w

∆P 2
w + · · · .

For the purpose of analysis, we assume that the parameter perturbation, ∆Pw, is sufficiently small such that
topology is preserved after regeneration with the new parameter value P ′

w = Pw + ∆Pw. The regenerated
instance would also yield offset values ~ε ′1, ~ε

′
2 and ~ε ′3 in Eq. (12). In this scenario, ‖ ~ε ′1−~ε1 ‖< εtol, ‖ ~ε ′2−~ε2 ‖<

εtol and ‖ ~ε ′3 − ~ε3 ‖< εtol are true, which from an implementation standpoint means we can set ~ε ′1 = ~ε1,
~ε ′2 = ~ε2 and ~ε ′3 = ~ε3. This permits rewriting the first equation in Eq. (12) as

~ε ′1 = ~rα(uα, vα;Pw + ∆Pw)′ −~rβ(uβ , vβ ;Pw + ∆Pw)′

= ~rα(uα, vα;Pw)−~rβ(uβ , vβ ;Pw)︸ ︷︷ ︸
~ε1

+
(
d~rα

dPw
− d~rβ

dPw

)
∆Pw +

1
2

(
d2~rα

dP 2
w

− d2~rβ

dP 2
w

)
∆P 2

w + · · ·

0 =
(
d~rα

dPw
− d~rβ

dPw

)
∆Pw +

1
2

(
d2~rα

dP 2
w

− d2~rβ

dP 2
w

)
∆P 2

w + · · · . (14)

The second equation in Eq. (12) can then be rewritten as

~ε ′2 = ~rα(uα, vα;Pw + ∆Pw)′ − ~ek(tk;Pw + ∆Pw)′

= ~rα(uα, vα;Pw)− ~ek(tk;Pw)︸ ︷︷ ︸
~ε2

+
(
d~rα

dPw
− d~ek

dPw

)
∆Pw +

1
2

(
d2~rα

dP 2
w

− d2~ek

dP 2
w

)
∆P 2

w + · · ·

0 =
(
d~rα

dPw
− d~ek

dPw

)
∆Pw +

1
2

(
d2~rα

dP 2
w

− d2~ek

dP 2
w

)
∆P 2

w + · · · , (15)

with the final equation in Eq. (12) becoming

~ε ′3 = ~rβ(uβ , vβ ;Pw + ∆Pw)′ − ~ek(tk;Pw + ∆Pw)′

= ~rβ(uβ , vβ ;Pw)− ~ek(tk;Pw)︸ ︷︷ ︸
~ε3

+
(
d~rβ

dPw
− d~ek

dPw

)
∆Pw +

1
2

(
d2~rβ

dP 2
w

− d2~ek

dP 2
w

)
∆P 2

w + · · ·

0 =
(
d~rβ

dPw
− d~ek

dPw

)
∆Pw +

1
2

(
d2~rβ

dP 2
w

− d2~ek

dP 2
w

)
∆P 2

w + · · · . (16)

In order for Eqs. (14), (15) and (16) to hold to first-order in ∆Pw, we must have

10 of 23

American Institute of Aeronautics and Astronautics

d~rα

dPw
− d~rβ

dPw
= 0

d~rα

dPw
− d~ek

dPw
= 0 (17)

d~rβ

dPw
− d~ek

dPw
= 0,

where each term can be expanded as

d~rα

dPw
=

(
∂~rα

∂uα

∂uα

∂Pw
+
∂~rα

∂vα

∂vα

∂Pw
+
∂~rα

∂Pw

)
=

(
∂~rα

∂Pw
+∇~rα · να

)
d~rβ

dPw
=

(
∂~rβ

∂uβ

∂uβ

∂Pw
+
∂~rβ

∂vβ

∂vβ

∂Pw
+
∂~rβ

∂Pw

)
=

(
∂~rβ

∂Pw
+∇~rβ · νβ

)
(18)

d~ek

dPw
=

(
∂~ek

∂tk

∂tk
∂Pw

+
∂~ek

∂Pw

)
=

(
∂~ek

∂Pw
+ ∇̂~ek · µk

)
.

We can then rewrite Eq. (17) using Eq. (18) to form a system of equations,

 ∇~rα −∇~rβ 0 0
∇~rα 0 −∇̂~ek −I
0 ∇~rβ −∇̂~ek −I

να

νβ

µk
∂~ek

∂Pw

 =

∂~rβ

∂Pw
− ∂~rα

∂Pw

− ∂~rα

∂Pw

− ∂~rβ

∂Pw

 , (19)

which expands to

∂~rα

∂uα

∂~rα

∂vα
− ∂

~rβ

∂uβ
−∂

~rβ

∂vβ
0 0

∂~rα

∂uα

∂~rα

∂vα
0 0

∂~ek

∂tk
−I

0 0
∂~rβ

∂uβ

∂~rβ

∂vβ
−∂

~ek

∂tk
−I

∂uα/∂Pw

∂vα/∂Pw

∂uβ/∂Pw

∂vβ/∂Pw

∂tk/∂Pw

∂~ek/∂Pw

=

∂~rβ

∂Pw
− ∂~rα

∂Pw

− ∂~rα

∂Pw

− ∂~rβ

∂Pw

 , (20)

where I is the identity matrix. The system in Eq. (20) is over-determined and can be solved in a least-squares
sense as Ax = b where the least-squares solution, x∗, is obtained by minimizing Rmin =‖ Ax∗ − b ‖. Since
there is no guarantee that Rmin will have order of magnitude ε0, substituting the components of x∗ back
into Eq. (18) may result in violations of Eq. (17) on the order of O(Rmin):

d~rα

dPw
− d~rβ

dPw
= O(Rmin) 6= 0

d~rα

dPw
− d~ek

dPw
= O(Rmin) 6= 0

d~rβ

dPw
− d~ek

dPw
= O(Rmin) 6= 0,

This situation also implies that the vertex at ~ek will need to be assigned one of three possible sensitivity
values:

d~rα

dPw
6= d~rβ

dPw
6= d~ek

dPw
.

In order to remedy this, the system in Eq. (20) is augmented with additional constraint equations in order
to provide a single sensitivity result, ~ψ, at vertex ~ek:

11 of 23

American Institute of Aeronautics and Astronautics

~ψ =
(
∂~rα

∂uα

∂uα

∂Pw
+
∂~rα

∂vα

∂vα

∂Pw
+
∂~rα

∂Pw

)
~ψ =

(
∂~rβ

∂uβ

∂uβ

∂Pw
+
∂~rβ

∂vβ

∂vβ

∂Pw
+
∂~rβ

∂Pw

)
(21)

~ψ =
(
∂~ek

∂t

∂t

∂Pw
+
∂~ek

∂Pw

)
.

By including these additional constraints into the overdetermined system and augmenting x with ~ψ, we
obtain the new system

∇~rα −∇~rβ 0 0 0
∇~rα 0 −∇̂~ek −I 0
0 ∇~rβ −∇̂~ek −I 0

−∇~rα 0 0 0 I
0 −∇~rβ 0 0 I
0 0 −∇̂~ek −I I

να

νβ

µk

∂~ek

∂Pw
~ψ

=

∂~rβ

∂Pw
− ∂~rα

∂Pw

− ∂~rα

∂Pw

− ∂~rβ

∂Pw
∂~rα

∂Pw
∂~rβ

∂Pw

0

. (22)

We can then write Eq. (22) in a block structure form with

[
A 0
G AI

]
︸ ︷︷ ︸

A

[
x
~ψ

]
︸ ︷︷ ︸

X

=

[
b
bG

]
︸ ︷︷ ︸

B

, (23)

where A, x and b are defined as in Eq. (20) and

G =

 − d~rα

duα
− d~rα

dvα
0 0 0 0

0 0 − d~rβ

duβ
− d~rβ

dvβ
0 0

0 0 0 0 −d~ek

dtk
−I

 ,

AI =

 I
I
I

 ,

bG =

∂~rα

∂Pw
∂~rβ

∂Pw

0

 .
The system in Eq. (23) remains over-determined and has the form AX = B, which can be solved in a

least-squares sense to give R̃min =‖ AX∗ − B ‖ with solution X∗. When R̃min > ε0, the resulting sensitivity
vector ~ψ is equivalent to a weighted linear combination of the vectors d~rα

dPw
6= d~rβ

dPw
6= d~ek

dPw
, which are obtained

by back-substituting the components να, νβ , µk and ∂~ek

∂Pw
of X∗ into Eq. (18). In this case, we can write

~ψ = λα
d~rα

dPw
+ λβ

d~rβ

dPw
+ λf

d~ek

dPw

and determine the weights λα, λβ and λf by setting up a 3× 3 system. On the other hand, if the solution
to the least-squares problem gives O(R̃min) ≈ ε0, then the weights become λα, λβ , λf ≈ 1

3 and

12 of 23

American Institute of Aeronautics and Astronautics

~ψ ≈ d~rα

dPw
≈ d~rβ

dPw
≈ d~ek

dPw

to within machine-precision.
In order to solve the system AX = B in a least-squares sense, it is possible to use the normal equations,

QR decomposition, or the singular value decomposition (SVD). The truncated SVD is known to be the
most robust approach when A is rank-deficient or singular, which can be the case when constructing A with
geometry information at points on trim curves.

When A has full rank and is non-singular, the solution X∗ is unique; however, when either of these
conditions are not satisfied the solution is non-unique because adding any vector projected in the null space
of A to X will also satisfy AX = B. In this case, a unique solution X∗

min is defined to have minimum norm
‖ X∗

min ‖ by projecting the zero-vector into the null space. This implies that each element of X∗
min has a

norm that is at most O(‖ X∗
min ‖) in magnitude. Since X consists of relative velocity terms να, νβ and µk,

the unique minimum norm solution also provides an upper bound to the relative velocity magnitudes.
The minimum norm solution to AX = B implies that the sensitivity ~ψ has an upper-bound norm as

a result of relative velocities having a bounded norm. However, this result is the lowest norm sensitivity
possible within the infinite solutions in the null space of A. From a geometry perturbation perspective,
vertex ~ek is perturbed to a new location ~e′k = ~ek + ~ψ∆Pw (to first order) with the smallest displacement
relative to each baseline intersecting face and trim curve. Therefore, in this approach the direction of design
motion (i.e. design velocity, or sensitivity of the vertex) of the trim curve is occurring along a “minimum
energy” trajectory (compared to other possible solutions in the null space) in the face and edge domains,
where specific energy can be written in the domain space of Fα, Fβ and Ek as

Fα: 1
2 ‖ να ‖2

Fβ : 1
2 ‖ νβ ‖2

Ek: 1
2µ

2
k .

An additional feature to this minimum velocity approach is that the resulting design velocity vector
contains a component that lies in the direction of the null space of A. This component direction is actually
the tangent vector direction at the vertex ~ek on the trim curve Ek. This can be shown by writing the tangent
at ~ek in a conventional manner using the local directional derivatives of Fα and Fβ at the intersection and
substituting the results into Eq. (17). It is clear that the resulting system has a null space which contains
the direction of the trim curve tangent at ~ek. This leads to the conclusion, seen both theoretically and in
practice, that the null space direction acts as the locus of points swept by all possible design velocity vectors
that can be attributed to a perturbed point on an edge; in other words, any perturbation direction chosen
for a point on an edge will cause design motion to a position on the null space vector, which is parallel to
the tangent vector at the point of the unperturbed edge and separated by a distance proportional to the
perturbation magnitude. The infinite design velocity solutions correlate to the ambiguity associated with
point tracking in finite-differencing, where the new t value for a point on a perturbed curve is uncertain
in comparison to its t value on the unperturbed curve. The minimal velocity approach prescribes a unique
design velocity that is driven by the constructed model geometry.

V.F. Parameter Sensitivity on Nodes with Minimum Velocity Method

Node topological entities may be treated in a similar fashion to edges. After discretizing a model, a vertex
on an edge has at most two intersecting faces (Fα and Fβ) that contribute to its position. However, the
vertex at a node has multiple intersecting edges (and faces) contributing to its position as shown in Figure 2.
This intersection node is created by collapsing the end-points of intersecting trim curves to a single point,
as seen in Figure 3. Such end-points are only used if they are within some tolerance sphere of each other, as
specified within the CAD system.

When the parameters that drive intersecting surfaces are perturbed, the perturbations may be such that
the trim curve end-points move in tandem and maintain a relative spacing within a tolerance sphere of each
other. This circumstance is illustrated in Figure 4. In some instances, the intersecting surfaces may also
be constructed with a design intent that preserves the single intersection node, thus disallowing the trim
curve end-points from moving outside of a tolerance sphere in proximity of each other, as shown in Figure 5.

13 of 23

American Institute of Aeronautics and Astronautics

(a) (b) (c)

Figure 2. Illustration of (a) three, (b) four, and (c) five surfaces intersecting at a node.

Figure 3. Illustration of the node topology representation for a BRep.

Figure 4. Node perturbation where no topology changes occur.

14 of 23

American Institute of Aeronautics and Astronautics

Figure 5. When perturbing intersecting surfaces, a single intersection node is maintained if the trim curve end-points
move in tandem to remain within a tolerance sphere of each other.

These types of perturbation conserve the original topology as no new intersection nodes, edges, or faces are
created.

If perturbations cause the new trim curve end-points to be enclosed by a sphere greater than the tol-
erance sphere defined in the CAD system, new intersection nodes and edges are created. This scenario is
depicted in Figure 6. As a result of two end-points being perturbed more than a tolerance sphere away from
the two remaining end-points, two new nodes and edges, shown in blue, are created to augment the initial
topology (thus ensuring “watertightness”). This scenario also reflects another inherent difficulty associated
with finite-differencing, where attempts to circumvent changes in the model topology (rescaling to accom-
modate differencing) are handled with an artificial design velocity at points in the discretization that have
no dependence on the perturbed parameter. Such an approach leads to errors in the sensitivity calculation
when the differenced model geometry instances do not share the same model topology.

Figure 6. Node perturbation resulting in a topology changes.

Since the CAD system constructs surfaces, trim curves, and intersection nodes in a non-transparent
manner to the user, it is generally unclear how the trim curve end-points are actually oriented prior to being

15 of 23

American Institute of Aeronautics and Astronautics

collapsed into a single intersection node. This inhibits the ability to track the end-points for sensitivity
analysis. In order to conduct sensitivity analysis at intersection nodes, a simplifying assumption is that a
node perturbation does not result in a node bifurcation and local topology is conserved as in Figures 4 and 5.

To determine the sensitivity of a node to driving parameters using the minimum velocity method, we
begin by extending Eq. (12) for all combinations of intersecting faces. Collecting the intersecting face indices
associated with node Nl in the set FNl

, we represent the number of faces (and therefore edges) incident to
node Nl as nl. Recalling that Eq. (12) is not exact, we must obtain, for each face Fη ∈ FNl

(η = 1, . . . , nl),
the point ~rη that minimizes ‖ ~rη − ~ql ‖. These points are collected in RNl

. We also consider that the CAD
geometry kernel determines the intersection of edges within a tolerance ball of radius εtol at the node as
shown in Figure 3. The intersection of faces at the node also occurs with the same tolerance, thus we have
for ~rη ∈ RNl

~r1 −~r2 = ~ε1,2

...
~r1 −~rnl−1 = ~ε1,nl−1

~r1 −~rnl
= ~ε1,nl

,

~r2 −~r3 = ~ε2,3

...
~r2 −~rnl−1 = ~ε2,nl−1

~r2 −~rnl
= ~ε2,nl

, · · ·

{
~rnl−2 −~rnl−1 = ~εnl−2,nl−1

~rnl−2 −~rnl
= ~εnl−2,nl

}
,

{
~rnl−1 −~rnl

= ~εnl−1,nl

}
(24)

where each equation corresponds to the perspective of each face in FN to all other intersecting faces. Again,
these equations are similar to Eq. (12), but the number of equations is greater due to the fact that the node
is generally incident to more than two faces. We also note, as in the edge case, the possibility for an offset
between the intersecting faces at the node, where

‖ ~ε1,2 ‖≤ εtol

...
‖ ~ε1,nl−1 ‖≤ εtol

‖ ~ε1,nl
‖≤ εtol

,

‖ ~ε2,3 ‖≤ εtol

...
‖ ~ε2,nl−1 ‖≤ εtol

‖ ~ε2,nl
‖≤ εtol

, · · ·

{
‖ ~εnl−2,nl−1 ‖≤ εtol

‖ ~εnl−2,nl
‖≤ εtol

}
,

{
‖ ~εnl−1,nl

‖≤ εtol

}
.

We can also add the perspective of each face to the node itself as
~r1 − ~ql = ~εN,1

~r2 − ~ql = ~εN,2

...
~rnl

− ~ql = ~εN,nl

 , (25)

with similar offsets written as

‖ ~εN,1 ‖ ≤ εtol

‖ ~εN,2 ‖ ≤ εtol

...
‖ ~εN,nl

‖ ≤ εtol.

At this point we recognize that the CAD geometry kernel provides no parameterization for ~ql and continue
with a variational analysis similar to the edge case. We first write a Taylor expansion around ~ql and ~rη for

16 of 23

American Institute of Aeronautics and Astronautics

η = 1, . . . , nl as

~q′l = ~ql +
d~ql

dPw
∆Pw +

1
2
d2~ql

dP 2
w

∆P 2
w + · · · (26)

~rη(uη, vη;Pw + ∆Pw)′ = ~rη(uη, vη;Pw) +
d~rη

dPw
∆Pw +

1
2
d2~rη

dP 2
w

∆P 2
w + · · · (27)

We also carry the assumption that the parameter perturbation, ∆Pw, is infinitesimally small to preserve
topology after regeneration with the new parameter P ′

w = Pw + ∆Pw. The new model instance would also
yield the offset vectors ~ε ′1,2, ~ε

′
N,1, etc., such that ‖ ~ε ′1,2−~ε1,2 ‖≤ εtol, ‖ ~ε ′N,1−~εN,1 ‖≤ εtol, etc., as well. From

an implementation view, we can then set ~ε ′1,2 = ~ε1,2, ~ε ′N,1 = ~εN,1, etc. We take the first equation in Eq. (24)
as representative of how to rewrite all face-to-face node constraint equations:

~ε ′1,2 = ~r1(u1, v1;Pw + ∆Pw)′ −~r2(u2, v2;Pw + ∆Pw)′

= ~r1(u1, v1;Pw)−~r2(u2, v2;Pw)︸ ︷︷ ︸
~ε1,2

+
(
d~r1

dPw
− d~r2

dPw

)
∆Pw +

1
2

(
d2~r1

dP 2
w

− d2~r2

dP 2
w

)
∆P 2

w + · · ·

0 =
(
d~r1

dPw
− d~r2

dPw

)
∆Pw +

1
2

(
d2~r1

dP 2
w

− d2~r2

dP 2
w

)
∆P 2

w + · · · . (28)

We also look at the first equation in Eq. (25) as representative of how to rewrite the face-to-node constraint
equations:

~ε ′N,1 = ~r1(u1, v1;Pw + ∆Pw)′ − ~q′l

= ~r1(u1, v1;Pw)− ~ql︸ ︷︷ ︸
~εN,1

+
(
d~r1

dPw
− d~ql

dPw

)
∆Pw +

1
2

(
d2~r1

dP 2
w

− d2~ql

dP 2
w

)
∆P 2

w + · · ·

0 =
(
d~r1

dPw
− d~ql

dPw

)
∆Pw +

1
2

(
d2~r1

dP 2
w

− d2~ql

dP 2
w

)
∆P 2

w + · · · . (29)

In order for Eqs. (28) and (29) to hold to first-order in ∆Pw, the first term in parenthesis must equal 0,
which allows us to write the following for each node constraint equation:

d~r1

dPw
− d~r2

dPw
= 0

...
d~r1

dPw
− d~rnl−1

dPw
= 0

d~r1

dPw
− d~rnl

dPw
= 0

,

d~r2

dPw
− d~r3

dPw
= 0

...
d~r2

dPw
− d~rnl−1

dPw
= 0

d~r2

dPw
− d~rnl

dPw
= 0

, · · ·

d~rnl−2

dPw
− d~rnl−1

dPw
= 0

d~rnl−2

dPw
− d~rnl

dPw
= 0

,
{

d~rnl−1

dPw
− d~rnl

dPw
= 0

}
(30)

and

d~r1

dPw
− d~ql

dPw
= 0

d~r2

dPw
− d~ql

dPw
= 0

...
d~rnl

dPw
− d~ql

dPw
= 0

. (31)

17 of 23

American Institute of Aeronautics and Astronautics

We recall further that each d~rη

dPw
can be expanded to

d~rη

dPw
=

(
∂~rη

∂uη

∂uη

∂Pw
+
∂~rη

∂vη

∂vη

∂Pw
+
∂~rη

∂Pw

)
=

(
∂~rη

∂Pw
+∇~rη · νη

)
.

Without needing to augment the equation set further to determine d~rη

dPw
, we can then write a linear system

as

∇~r1 −∇~r2 0 · · · 0 0
∇~r1 0 −∇~r3 0 · · · 0

...
.

...
∇~r1 0 · · · · · · ∇~rnl

0
0 ∇~r2 −∇~r3 0 · · · 0
0 ∇~r2 0 −∇~r4 · · · 0
...

.
...

0 ∇~r2 0 · · · ∇~rnl
0

...
.

...
0 · · · 0 ∇~rnl−1 −∇~rnl

0
−∇~r1 0 · · · · · · 0 I

0 −∇~r2 0 · · · 0 I
...

.
...

0 · · · · · · 0 −∇~rnl
I

︸ ︷︷ ︸

AN

ν1

ν2

ν3
...
νnl

d~ql

dPw

︸ ︷︷ ︸

XN

=

∂~r2

∂Pw
− ∂~r1

∂Pw
∂~r3

∂Pw
− ∂~r1

∂Pw
...

∂~rnl

∂Pw
− ∂~rj

∂Pw
∂~r3

∂Pw
− ∂~r2

∂Pw
∂~r4

∂Pw
− ∂~r2

∂Pw
...

∂~rnl

∂Pw
− ∂~r2

∂Pw
...

∂~rnl

∂Pw
− ∂~rnl−1

∂Pw
∂~r1

∂Pw
∂~r2

∂Pw
...

∂~rnl

∂Pw

︸ ︷︷ ︸

BN

. (32)

Since ANXN = BN is an over-determined system, it is also solved in a least-squares sense using the truncated
SVD approach. It is likely that AN may be rank deficient as well; in these situations, the only unique solution
we can use is X∗

F , which minimizes ‖ ANX∗
N − BN ‖ while having a minimum value for ‖ X∗

N ‖. As in the
edge case, the geometric perspective for this solution implies a minimum relative velocity embodied in d~rη

dPw

for the design motion of the node.

V.G. Simplification of the Minimum Velocity Method for Edges

Having developed the minimum velocity method for nodes, we can simplify the edge formulation such that
a single algorithm can be used for both edges and nodes. We utilize the first equation in Eq. (12) for the
edge sensitivity calculation and generate a simplified form of Eq. (22) as ∇~rα −∇~rβ 0

−∇~rα 0 I
0 −∇~rβ I

 να

νβ

~ψ

 =

∂~rβ

∂Pw
− ∂~rα

∂Pw

∂~rα

∂Pw
∂~rβ

∂Pw

 . (33)

This approach simplifies the implementation because Eq. (33) is generated by applying the same algorithm
for the node system in Eq. (32) to a two-face “node” (i.e. a location along the edge is considered a “node”
incident to two faces). A single algorithm then serves to calculate the sensitivity of edges and nodes, albeit
the solution to Eq. (33) will not exactly match the solution to Eq. (22). The difference in the minimum
velocity solutions is seen in the slightly different null space for each system; the solution from Eq. (33)
will likely have a smaller magnitude than that obtained from Eq. (22) with the tradeoff that less geometry

18 of 23

American Institute of Aeronautics and Astronautics

information is taken into account. The subsequent examples utilize this simplified implementation for edge
sensitivities.

VI. Examples

Consider first the model of two intersecting cylinders shown in Figure 7(a) constructed using the Solid-
Works CAD system. The model is parameterized such that the diameter of the small cylinder can be changed.
Modification of this parameter (denoted P) does not alter the surface of the larger cylinder as there is no
such dependency in the feature-tree. However, the intersection curve of the two cylinders (shown in red in
Figure 7(a)) is indirectly dependent on the small cylinder diameter. The response of the intersection curve
to a change in the small cylinder diameter is shown in 7(b). The baseline intersection curve is rendered
in blue. As the small cylinder diameter is perturbed by ±∆P , the new intersection curves generated by
master-model regeneration are shown in red. Section V.E, with the exception that Eq. (33) is substituted
for Eq. (22), is used to compute the edge sensitivity derivatives at several discrete points along the original
intersection. First order approximations to the perturbed points are then computed using the sensitivity
derivatives, ±∆P , and the corresponding points of the original curve. These points are plotted as the cyan
points in the figure. Their approximation is in good agreement with the perturbed analytic curve.

(a) (b)

Figure 7. Union of two Cylinders (a) geometry with intersection edge in red, (b) Edge perturbation comparison.

Next we consider the model of the small cam shown in Figure 8. This model was constructed using
Pro/ENGINEER and is parameterized to allow specification of the camshaft diameter. Modification of the
camshaft diameter will result in a change in the diameter of the hole through the center of the cam. The
model is oriented such that the longitudinal axis of the camshaft, and therefore the center hole of the cam,
is parallel to the Z axis. The center hole is extruded along its axis with a fixed thickness such that a pin,
parallel to the Y axis, can be added to secure the cam to the camshaft. An additional parameter defines the
diameter of the pin. The cam hole is keyed to further secure the cam to the camshaft.

The methods described in Section V are applied to the cam model. When the parameter which defines the
diameter of the camshaft is modified, the model association forces a regeneration of the cylindrical surface
defining the hole through the center of the cam. As a result, there is a non-zero sensitivity of the hole
surface to the camshaft diameter. This sensitivity is computed analytically and shown in Figure 9. Note
that portions of the cam are translucently rendered, thus exposing the affected surfaces of the cam center
hole. Figure 9(a) shows the sensitivity contours of the X coordinate to camshaft diameter while Figure 9(b)
shows the same sensitivity of the Y coordinate. Symmetry about the XZ and Y Z planes respectively is
apparent and expected due to the model orientation. The sensitivity of the planar sides of the key slot, the
pin hole, and the sides of the cam is identically zero since these surfaces have no dependency on the camshaft
diameter. Therefore color contours on these surface are not shown.

19 of 23

American Institute of Aeronautics and Astronautics

Figure 8. Simple cam part with parameterized shaft diameter.

(a) (b)

Figure 9. Sensitivity of camshaft cutout (a)
∂x

∂P
, (b)

∂y

∂P
.

20 of 23

American Institute of Aeronautics and Astronautics

In order to assess the sensitivity of edges and nodes, we also examine a change to the pin hole diameter.
The topology of the pin hole is show in Figure 10 as a reference for the location of the edges and nodes
under examination. The methods of Sections V.E, V.F, and V.G are applied to generate the respective
sensitivity derivatives. The computed sensitivity derivatives are tabulated in Tables 1 and 2 along with their
finite-difference (FD) counterparts. The finite-difference values result from a perturbation of 0.0001 to the
nominal pin hole diameter of 0.338. Perturbations of 0.001 and 0.00001 showed no appreciable change in the
FD values thus further indicating difficulty in the choice of step size.

Figure 10. Cam model topology showing Edges and Nodes.

The significant differences are underlined in the tables. Note that when derivatives are O(ε0) they are
considered equal and not highlighted. Edge sensitivity derivatives are evaluated at their midpoint for brevity.
Edges 7, 12, 30, 31, 32, and 33 define the intersection of the pin hole with the outer and inner cylindrical
surfaces of the center hole extrusion. Edges 42 and 43 connect the inner and outer intersections along the
pin hole length.

Table 1. Validation of edge sensitivity derivatives evaluated at t = 0.5 ∗ (tmin + tmax) for the Pro/ENGINEER Cam
Example

Analytic Finite Difference*

Edge ∂x
∂d

∂y
∂d

∂z
∂d

∂x
∂d

∂y
∂d

∂z
∂d

7 -3.482710e-01 -3.655012e-02 3.587600e-01 -3.483801e-01 -3.656156e-02 3.586547e-01
12 -3.482757e-01 -3.655111e-02 -3.587555e-01 -3.486479e-01 -3.659017e-02 -3.583959e-01
30 3.482978e-01 -3.655579e-02 3.587340e-01 3.486181e-01 -3.658941e-02 3.584245e-01
31 3.483032e-01 -3.655693e-02 -3.587288e-01 3.483408e-01 -3.656087e-02 -3.586925e-01
32 -1.658267e-05 -1.265307e-10 5.000000e-01 5.069418e-04 3.868017e-09 5.000000e-01
33 1.658267e-05 -1.265308e-10 -5.000000e-01 -5.069418e-04 3.868017e-09 -5.000000e-01
42 -5.000000e-01 0.000000e+00 6.123032e-17 -5.000000e-01 -9.580699e-02 0.000000e+00
43 5.000000e-01 0.000000e+00 -6.123032e-17 5.000000e-01 -9.580699e-02 0.000000e+00

* Underlined digits indicated significant differences.

The analytic sensitivity derivatives in Table 1 exhibit the expected symmetry of the model construction.
For example, edges 7 and 12 are symmetric about the XY plane. These edges are defined by the intersection
of the pin hole and a cylindrical surface aligned with the Z axis. Therefore, as the pin hole diameter is

21 of 23

American Institute of Aeronautics and Astronautics

increased, their midpoints will move along a design motion vector with a component in the −X direction.
As the midpoints will also remain on the Z aligned cylinder, an increase in the pin hole diameter will induce
a −Y component to the motion vector. However, due to the XY symmetry of the edges and orientation of
the constituent geometry, the motion vector for the midpoint of edge 7 will have a +Z component whereas
that of the midpoint of edge 12 will have a −Z component as the pin hole diameter increases. Therefore,
the sensitivity derivatives at the midpoint of edges 7 and 12 with respect to a change in pin hole diameter
exhibit the same symmetry about the XY plane as do the edge shapes themselves. Similar observations can
be made for other edge pairs.

The analytic sensitivities in Table 1 show the expected symmetry to more significant digits than do the
respective FD approximations. The argument could be made that the analytic values are more accurate
because an arbitrary step-size was selected for the FD calculations. As stated above, it is commonly known
that an appropriate step-size must be selected for each parameter; in this case, we point out that although
the selected step-size may be considered “small” from the standpoint of a designer accustomed to the order-
of-magnitude of values generally considered for the parameter, such conclusions will often be insufficient for
a finite-difference calculation. Truncation error or lack of precision will lead to ambiguity in the FD result
because we generally do not know what the “true” design velocity should be. For example, edges 42 and 43
have FD results that do not agree in the Y -component with the analytic sensitivities; in this case the point
should have a design velocity with a zero-valued Y -component, as seen in the analytic result, because the
model design implies a design motion normal to the Y Z plane. It may be possible to obtain greater precision
agreement between the two methods by determining an appropriate step-size; however, the results will not
match exactly because the FD method implies evaluation of the perturbed points at the same t value of the
baseline edge, whereas the minimal velocity method allows for relative design motion to different t values on
the perturbed edge.

Table 2. Validation of node sensitivity derivatives for the pin surfaces of the Pro/ENGINEER Cam Example

Analytic Finite Difference
Node ∂x

∂d
∂y
∂d

∂z
∂d

∂x
∂d

∂y
∂d

∂z
∂d

7 -6.727954e-16 -2.700634e-16 5.000000e-01 0.000000e+00 0.000000e+00 5.000000e-01
8 -5.000000e-01 -7.597324e-02 6.260072e-17 -5.000000e-01 -7.597324e-02 -3.330669e-12

11 -1.264327e-14 -2.594608e-17 -5.000000e-01 -2.465190e-28 0.000000e+00 -5.000000e-01
26 5.000000e-01 -7.597324e-02 -5.862222e-17 5.000000e-01 -7.597324e-02 0.000000e+00
27 -5.000000e-01 -1.156407e-01 6.583285e-17 -5.000000e-01 -1.156407e-01 -5.551115e-12
28 5.000000e-01 -1.156407e-01 -5.543323e-17 5.000000e-01 -1.156407e-01 -2.220446e-12

When comparing the analytic versus FD sensitivity derivatives of the nodes of the pin hole feature, Table
2 shows excellent agreement. In fact, the respective sensitivities agree to seven significant digits for all values
which are not O(ε0) thus adding to the confidence in the methods of Section V.F.

VII. Conclusion

A method for computing analytic geometric sensitivity derivatives by tracing the evolution of features
which constitute a BRep CAD model was presented. The method presented offers the construction of
sensitivity derivatives that are directly tied to the master-model parameters of the subject CAD model and
as such reflect the original design intent. The method presented was analytic and therefore avoids problems
associated with finite-difference methods. No access to the source code of the underlying modeler was
required. As no modification or differencing of the modeler source was needed, the problem of sensitivity
derivative computation remains tractable. Sensitivity derivatives were calculated for all components of
the model topology allowing for the indirect associativity of edges and nodes which may bound multiple
geometric entities. The sensitivity of edges and nodes was computed via a minimum velocity approach that
does not require any assumed directionality of perturbation. Examples were provided to demonstrate and
help validate the method. Quantification of the minimum velocity method for select edges and nodes of a
cam model was provided through comparison to finite-difference computations of the respective sensitivity

22 of 23

American Institute of Aeronautics and Astronautics

derivatives.

Acknowledgments

The authors would like to acknowledge the Supersonics Project of the NASA Fundamental Aeronautics
Program for supporting this work and Mark Drela for providing additional perspectives in discussions on
the geometry sensitivity problem.

References

1Nielsen, E. J., Diskin, B., and Yamaleev, N. K., “Discrete Adjoint-Based Design Optimization of Unsteady Turbulent
Flows on Dynamic Unstructured Grids,” AIAA Journal , Vol. 48, No. 6, June 2010, pp. 1195–1206.

2Bischof, C., Carle, A., Khademi, P., and Mauer, A., “ADIFOR 2.0: Automatic Differentiation of Fortran 77 Programs,”
IEEE Computational Science and Engineering, Vol. 3, No. 3, 1996, pp. 18–32.

3Bischof, C., Roh, L., and Mauer, A., “ADIC–an Extensible Automatic Differentiation Tool for ANSI-C,” Software–
Practice and Experience, Vol. 27, No. 12, 1997, pp. 1427–1456.

4Bischof, C. H., Jones, W. T., Mauer, A., and Samareh-Abolhassani, J., “Experiences with the Application of the ADIC
Automatic Differentiation tool to the CSCMDO 3-D Volume Grid Generation Code,” Proceedings of the 34th AIAA Aerospace
Sciences Meeting, American Institute of Aeronautics and Astronomics, 1996, AIAA 1996-0716.

5Gumbert, C. R., Hou, G. J. W., and Newman, P. A., “Simultaneous Aerodynamic Analysis and Design Optimization
(SAADO) for a 3-D Flexible Wing,” Proceedings of the 39th AIAA Aerospace Sciences Meeting, American Institute of Aero-
nautics and Astronomics, 2001, AIAA 2001-1107.

6Smith, R. E., Bloor, M. I. G., Wilson, M. J., and Thomas, A. M., “Rapid Airplane Parametric Input Design (RAPID),”
Proceedings of the 12th AIAA Computational Fluid Dynamics Conference, San Diego, American Institute of Aeronautics and
Astronautics, 1995, AIAA 1995-1687.

7Anderson, W. K., Newman, J. C., Whitfield, D. L., and Nielsen, E. J., “Sensitivity Analysis for Navier-Stokes Equations on
Unstructured Meshes Using Complex Variables,” AIAA Journal , Vol. 39, No. 1, January 2001, pp. 56–63, doi: 10.2514/2.1270.

8“OpenCASCADE,” http://www.opencascade.org, July 2010, OPEN CASCADE, S.A.S.
9Samareh, J. A., “A Novel Shape Parameterization Approach,” NASA TM-1999-209116, May 1999.

10Samareh, J. A., “Aerodynamic Shape Optimization Based On Free-Form Deformation,” 10th AIAA/ISSMO Multidisci-
plinary Analysis and Optimization Conference, Albany, New York, Aug 2004, AIAA 2004-4630.

11Nielsen, E. J. and Park, M. A., “Using an Adjoint Approach to Eliminate Mesh Sensitivities in Computational Design,”
AIAA Journal , Vol. 44, No. 5, May 2006, pp. 948–953.

12Nielsen, E. J., Lee-Rausch, E. M., and Jones, W. T., “Adjoint-Based Design of Rotors in a Noninertial Reference Frame,”
Journal of Aircraft , Vol. 47, No. 2, March-April 2010, pp. 638–646, doi: 10.2514/1.46044.

13Alonso, J., Martins, J., Reuther, J., Haimes, R., and Crawford, C., “High-Fidelity Aero-Structural Design Using a
Parametric CAD-Based Model,” 16th AIAA Computational Fluid Dynamics Conference, American Institute of Aeronautics
and Astronautics, Orlando, Florida, June 2003, AIAA 2003-3429.

14Choi, S., Alonso, J. J., Kroo, I. M., and Wintzer, M., “Multi-Fidelity Design Optimization of Low-Boom Supersonic
Business Jets,” AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, American Institute of Aeronautics
and Astronautics, Albany, New York, 30 August - 1 September 2004, AIAA 2004-4371.

15Nemec, M., Aftosmis, M. J., and Pulliam, T. H., “CAD-Based Aerodynamic Design of Complex Configurations Using a
Cartesian Method,” 42nd AIAA Aerospace Sciences Meeting and Exhibit , American Institute of Aeronautics and Astronautics,
Reno, Nevada, 5-8 January 2004, AIAA 2004-113.

16Haimes, R. and Follen, G., “Computational Analysis PRogramming Interface,” Proceedings of the 6th International
Conference on Numerical Grid Generation in Computational Field Simulations, edited by Cross, Eiseman, Hauser, Soni, and
Thompson, July 1998.

17Crawford, C. A. and Haimes, R., “Synthesizing an MDO Architecture in CAD,” 42nd AIAA Aerospace Sciences Meeting
and Exhibit , American Institute of Aeronautics and Astronautics, Reno, Nevada, 5-8 January 2004, AIAA 2004-281.

18Haimes, R. and Merchant, A., “Direct CAD Access for Analysis and Design,” Evolutionary and Deterministic Methods
for Design, Optimization and Control with Applications to Industrial and Societal Problems, edited by R. Schilling, W. Haase,
J. Periaux, G. Bugeda, and H. Baier, EUROGEN 2005, Munich, September 2005.

19Aftosmis, M. J., Delanaye, M., and Haimes, R., “Automatic Generation of CFD-Ready Surface Triangulations from CAD
Geometry,” 37th AIAA Aerospace Sciences Meeting and Exhibit , American Institute of Aeronautics and Astronautics, Reno,
Nevada, 11-14 January 1999, AIAA 99-0776.

20Haimes, R. and Aftomis, M. J., “On Generating High Quality Watertight Triangulations Directly from CAD,” Proceed-
ings of the 8th International Conference on Numerical Grid Generation in Computational Field Simulations, University of
Greenwich, United Kingdom, July 2002.

23 of 23

American Institute of Aeronautics and Astronautics

