
GRIDEX – AN INTEGRATED GRID GENERATION PACKAGE FOR CFD

William T. Jones*
NASA Langley Research Center

Hampton, VA 23681-2199
w.t.jones@larc.nasa.gov

ABSTRACT

An integrated tool developed for the construction of
unstructured numerical grids about complex
configurations is presented. The tool is highly
integrated and employs the native underlying geometry
modeling kernel used to define the target domain for
providing topological and geometric access used by the
grid generation procedures. This access greatly
reduces the overall process time required to generate
grids for complex models. In addition, the tool is based
on an underlying framework that enables the integration
of new grid generation technology as it becomes
available. The GridEx package presented herein is
under development at the NASA Langley Research
Center as part of the Fast Adaptive Aerospace Tools
initiative.

INTRODUCTION

The Fast Adaptive Aerospace Tools (FAAST) initiative
at the NASA Langley Research Center is targeted at
developing fast adaptive methods for the analysis and
design of complex aerospace configurations in all speed
regimes1. One of the major components of this process
is the initial grid generation for complex configurations
and the adaptation of those grids to specified global
error tolerances. Key to the automation of the grid
generation and adaptation procedures is the use of
unstructured grid generation techniques and the
incorporation of Computer Aided Design (CAD)
models.

At the core of the FAAST research is the goal of
streamlining the overall numerical simulation process.
Unstructured grid generation techniques provide a
means of generating high quality discretizations for
complex domains in a nearly automated fashion2-5. In
addition, unstructured grids facilitate localized

refinement, coarsening, and topology changes such as
those resulting from solution based adaptation. With
these advantages in mind, development of highly
automated grid generation and adaptation tools tends to
focus on unstructured techniques. However,
unstructured techniques alone are not sufficient to
optimize the overall analysis process.

With the ever increasing desire to expand the role of
numerical simulation in the overall production process,
it is necessary to leverage the existing tools and
capabilities used in other areas during the design of a
new product. The use of production CAD models as
the basis for the simulation is one such technique. As
the targets of simulation become increasingly more
complex, lower fidelity descriptions no longer suffice.
With increasing complexity comes the growing desire
to reuse the CAD descriptions created during other
phases of production. It is therefore desirable to link
the grid generation and solution based adaptation
directly to the subject CAD model. It is typical to
exchange CAD data via standardized file formats such
as the Initial Graphics Exchange Specification (IGES)
or the Standard for the Exchange of Product Model
Data (STEP). However, it must be realized that often
the CAD model has been designed for manufacture
rather than for analysis. For example, some geometric
features, irrelevant to the analysis stage, may need to be
suppressed or eliminated from the model.
Unfortunately, this potential need for adjustment to the
model makes standardized data exchange mechanisms
less desirable. Instead it is most beneficial to interface
directly to the originating modeling kernel used to
construct the subject part. The latter method also
provides the ability to leverage the model design intent
(master model access, feature suppression, etc.). In
practice however, NASA must contend with a variety
of diverse commercial CAD systems as part of its
technology assessment and problem solving role and
therefore cannot tailor its analysis capability to a given
system. We require compatibility internally within
NASA as well as with our partners in industry and
academia. Vendor independent access to numerical
geometry is therefore a requirement for the tools and
techniques developed as part of the current work.

*Computer Engineer, Data Analysis and Imaging Branch
Copyright © 2003 by the American Institute of Aeronautics and

Astronautics, Inc. No copyright is asserted in the United States under
Title 17, U.S. Code. The U.S. Government has a royalty-free license
to exercise all rights under the copyright claimed herein for
Governmental Purposes. All other rights are reserved by the
copyright owner.

1 OF 10
American Institute of Aeronautics and Astronautics Paper 2003-4129

Though the field of unstructured grid generation has
produced a number of tools capable of creating high
quality grids for complex configurations, the field is far
from mature. As such, one of the design goals for the
current work was to allow for the extension of the
resulting application to track technological advances in
the field. To satisfy this goal, an Application
Programming Interface (API) for unstructured grid
generation was developed as the basis for the GridEx
package6. The API provides a generic software
interface to relevant geometry, grid metric, and
meshing component routines. The use of the API
serves to insulate the application from the specific
algorithmic details. Therefore, the implementation of a
given software interface can be modified to
accommodate technological improvements without
impacting the overall application. In addition, multiple
implementations for the interfaces can be supplied to
the application offering the ability to do side-by-side
comparisons of different algorithms, and combinations
thereof, within a given session.

What follows is a description of the development and
operation of GridEx along with examples of
unstructured grids suitable for use in high Reynolds
number viscous Computational Fluid Dynamics (CFD)
simulations.

DESIGN AND DEVELOPMENT

The design of the GridEx application was centered on
usability and extensibility. The package is a product of
the FAAST element of the Airframe Systems Concept
to Test (ASCoT) and 3rd Generation Reusable Launch
Vehicles (RLV) programs of the NASA Langley
Research Center. One of the key components to the
FAAST effort is the rapid generation and adaptation10
of numerical grids directly from CAD models. The grid
generation and adaptation capabilities are required to be
independent of the originating CAD system, thereby
providing support across the multitude of available
systems. In addition, the capabilities must be
implemented in a manner which facilitates the infusion
of new techniques that result from FAAST research
efforts.

To meet these needs, the GridEx application is based on
a framework that is implemented by a suite of libraries
tailored to the field of numerical mesh generation. The
framework is also used to tag the entities of the CAD
model with application and analysis specific
information. As such, the grid is inherently associated
to the defining geometry from the point of creation.
Downstream processes in the analysis have the

advantage of this association when they access the
geometry or the tagging data. The result is a history of
the analysis that is centered on the geometry model of
interest. For example, a mesh adaptation package can
obtain not only the original grid, but also the underlying
geometry to which it is associated. Node movement or
the addition of new nodes required by the adaptation
can be accurately computed using the actual geometry.
Similarly, the geometry can be tagged with the adapted
mesh for later use. The framework also utilizes an
unstructured grid generation API providing the ability
to seamlessly incorporate enhancements in unstructured
meshing techniques for tailored use by the FAAST
team. The API facilitates the inclusion of emerging
technological advances in unstructured methods over
the life of the FAAST effort and beyond.

The unstructured grid generation API is defined with a
set of functions specific to the task at hand. These
include the discretization of 1-dimensional edge, 2-
dimensional face, and 3-dimensional volume entities.
The API also provides a generic method of determining
spacing constraints to be imposed on the resulting
mesh. This method provides three principal spacing
values and directions for any location in the
computational domain. Also, included in the API are
logistical functions to provide: a unique identifier for
the implementing algorithm; capabilities of the
algorithm (edge, face, volume, etc.); and the ability to
communicate meshing progress metrics. Listing the
capabilities of an implementation provides the
opportunity to satisfy by other means any functionality
not provided by the given algorithm. If an algorithm
only supports a portion of the API, only that portion
need be implemented and the capabilities list is reported
accordingly. Implementation of missing capability will
be provided by other supporting algorithms if possible.
Access to the geometrical information of the target
model is also provided by an API which will be
discussed in a subsequent section.

The API definition is currently restricted to triangular
surface and tetrahedral volume mesh generation.
However, the definition is independent of any specific
algorithm and may be implemented in any manner
consistent with the functional definition. For example,
the meshing functions may be implemented with
Delaunay or advancing front techniques; the spacing
constraints may come from a background grid/source
analogy, from analytic functions, or from some solution
derived quantity. Regardless of the implementation,
data is exchanged through the API making possible the
transparent substitution of data construction methods.

2 OF 10
American Institute of Aeronautics and Astronautics Paper 2003-4129

The implementation of the unstructured grid generation
API functions used by GridEx is provided via Dynamic
Shared Objects (DSOs) alternatively referred to as a
Dynamically Linked Libraries (DLLs). One or more
DSOs can be loaded at execution providing runtime
customization of the capabilities made available to the
user by the GridEx package. The user controls the list
of available shared objects via an environment variable
that is processed at runtime and used to load and assess
the specified libraries. As part of the assessment
process, the Graphical User Interface (GUI) is
dynamically updated and the DSO list is traversed in
order to resolve any missing capabilities. If the selected
DSO lacks a particular capability, the first object that
provides the missing functionality is used to resolve it.
An example would be a DSO that implements an
algorithm that only provides a volume meshing
capability. In this case when the lacking DSO is
selected, the list is traversed to locate, from the
remaining DSOs, an object that provides edge and face
meshing. That implementation is then used as the
default algorithm for edge and face meshing when and
if needed by the “volume only” algorithm. Similarly,
the first available implementation is used as a default
for missing DSOs when restarting a session. In the
latter case, if a previous session depended on a DSO not
currently loaded, the “default” is used and an
appropriate warning is posted to the user.

UG_MeshTriFace(v,f,n,x,u,nb,b,ns,s,m,ne,e,c,p)

int v – Target region

int f – Target face entity

int n – Number of fixed nodes

double *x - Fixed node coords

double *u - Fixed node parameters

int nb - Number of boundary segs

int *b - Oriented Boundary segs

int ns - Number of Interior segs

int *s - Interior segments

int *m – Number of computed nodes

double *ne – Num of computed elements

int **e – Output element defs

double **c – Output physical coords

double **p – Output parametric cords

Purpose: Triangulation of a face entity

UG_MeshTetVolume(v,n,x,l,t,nf,f,ns,s,m,ne,e,c)

int v – Target region

int n – Number of fixed nodes

double *x - Fixed node coords

int *l - Number of shell elements

int **t - Shell elements

int nf - Number of interior faces

int *f - Interior triangular faces

int ns - Number of interior segs

int *s - Interior segments

int *m – Number of computed nodes

double *ne – Num of computed elements The API definition is detailed in Reference 6, but is
included here for completeness. It should be noted that
the implementations of the API used by GridEx are
assumed to be written in the C programming language.
Therefore, all of the descriptions to follow assume the
C language. In practice it is possible to support existing
algorithm implementations written in other languages
such as FORTRAN77 and FORTRAN90. This is
accomplished by assembling a DSO consisting of C
implementations of the API which call routines written
in other languages. This places the burden of mixed
language programming on the DSO developer, but
keeps the calling sequence consistent for GridEx. The
unstructured grid API follows as:

double **e – Output element defs

double **c – Output physical cords

Purpose: Volume tetrahedralization

UG_GetSpacing(x,y,z,s,dir)

double *x – Target X coordinate

double *y – Target Y coordinate

double *z – Target Z coordinate

double s[3] – Edge lengths

double dir[9] – Principal directions

Purpose: Determine spacing constraints given a

target location in the domain

Note: Arguments representing the target coordinate for
UG_GetSpacing() are passed by reference to facilitate a
call from FORTRAN code.

UG_MeshEdge(v,e,b,u,m,c,p)

int v – Target region

int e – Target edge entity

double b[3] - Bounding points Unless otherwise stated, all functions return an integer
value of 0 on success and 1 on failure. All arrays are
1-dimensional. Coordinate arrays are ordered such that
the stride of the array is the space dimension (i.e. for a
Cartesian array, ordering is x1, y1, z1, x2, y2, z2, ..., xn,
yn, zn). Likewise, element arrays are listed with a stride

double u[2] – Bounding parameters

int *m – Number of computed nodes

double *c – Output physical coords

double *p – Output parametric coords

Purpose: Discretize an edge entity

3 OF 10
American Institute of Aeronautics and Astronautics Paper 2003-4129

GEOMETRY ACCESS equal to the number of nodes (i.e. triangle array n1,1,
n1,2, n1,3, n2,1, n2,2, n2,3, ..., nn,1, nn,2, nn,3). Allocation of
arrays is handled by the API implementation and it is
expected that GridEx can freely release these memory
resources as necessary.

The current work employs the Computational Analysis
Programming Interface (CAPrI)7,8 as the basis for
geometry access. CAPrI is a CAD-vendor neutral API
providing the reduced set of solid modeling operations
common to computational analysis. It accesses
computational solid geometry related information
directly from the kernel of the originating CAD system.
The CAPrI API offers a layer of abstraction from the
specific methods of a given CAD kernel’s API while
ultimately utilizing the original system used to create
the subject geometry. Applications derived from
CAPrI, however, are shielded by the API from the
specifics of the underlying modeling kernel. They
automatically may employ any of the of supported
CAD systems without modification of the application
itself. Support for additional modeling systems is
provided to all derivative applications by the creation of
a new CAPrI driver for the desired modeling kernel.
This level of abstraction is in direct alignment with the
development of the GridEx application. The single
GridEx source code will support, transparent to the
user, any and all of the CAD kernels supported by the
CAPrI API. The development of new CAPrI drivers
will allow GridEx to effortlessly track the changes,
enhancements, and developments of the CAD industry.

The following functions must be implemented to
provide logistical information about the DSO. Each
DSO is assigned a unique identity represented as an
integer. DSO developers are encouraged, but not
required, to verify the uniqueness of their respective
identity with the GridEx developers. While failure to
do so may prevent interoperability with other DSOs, it
will not prevent the use of a DSO within GridEx.
Failure to provide a unique identity however could
potentially encounter collisions with other production
and development DSOs. Such collisions may or may
not affect development and should be noted by DSO
developers.

int UG_Identity(void)

Returns an unique integer Id of the

algorithm/DSO

int UG_WhatProvides(void)

Returns an packed integer that details

the functionality provided by the DSO

The CAPrI API provides operations that are common
across the supported systems and provides for
interrogation, data tagging, and the creation of solid
primitives. Since it is actually implemented with the
native modeling kernel of the subject part, CAPrI also
provides access to the master model of the part
allowing for feature suppression, parameter
modification, regeneration, etc. CAPrI operations are
restricted to manifold solid geometry, such as that
defined by most modern CAD systems, and as such
provides a closed topological description of the domain
of interest. CAPrI also provides a closed tessellation9
of the subject part that may be used to ensure physical
consistency of the model. Therefore, inherent in the
design of CAPrI, all of the geometric and topological
information required for intelligently automated
unstructured grid generation is available for use by
derivative applications.

The progress function described earlier is provided by
the GridEx package and may be used by an API
implementation to transfer information to and from
GridEx. When called the API will supply a progress
metric (percent complete) which will be displayed by
the GridEx progress bar. GridEx will return a value of
zero if the caller should continue. A returned value of 1
signals an interrupt whereby the caller is expected to
perform local clean up followed by an error return.

int UG_Progress(metric)

double *metric – Current progress metric

Again, the argument is passed by reference to facilitate
calls from FORTRAN routines.

The above functions can be implemented and used to
build custom DSOs by a GridEx user. This allows the
user a great deal of flexibility to expand upon the
methods of operation provided by the standard GridEx
distribution. It also allows easy incorporation of
technological breakthroughs into the production
environment. As opposed to a fixed procedure, GridEx
provides a matrix of capabilities with combinations
defined by the supporting DSOs selected at runtime.

4 OF 10
American Institute of Aeronautics and Astronautics Paper 2003-4129

An additional layer of abstraction is used by the
unstructured grid generation API to encapsulate the
geometry operations such that they may be replaced or
enhanced as directed by future needs. One such change
might be to support geometry-only definitions. A
primary example of such a definition is that of legacy
IGES data. This type of data would require

combination with a separate description of the topology
for use in automated grid generation and as such does
not fit into the current design goals of the CAPrI API.

CADGeom_NearestOnFace(v,f,po,uv,pt)

int v – Target region

int f – Target edge entity

double *po - Target coordinates

The following documents a portion of the abstraction
layer to the CAPrI API. Only the primary methods
typically required by the methods of the unstructured
grid generation API are included. Input and Output of
geometry as well as other topological and logistical
operations are handled internally by GridEx and are not
documented here for the sake of brevity.

double *uv - In/Output Edge parameter

double *pt – Output Edge coord

Purpose: Snap a point to the Face

CADGeom_NormalToFace(v,f,uv,pt,n)

int v – Target region

int f – Target face entity

CADGeom_LengthOfEdge(v,e,ts,te,l) double *uv - Target parameters

int v – Target region double *pt – Output coordinates

int e – Target edge entity double *n – Output normal

double ts - Starting parameter

double te – Ending parameter Purpose: Determine normal of a Face

double *l – Output length

Coordinates are ordered X, Y, Z and surface parameters
are ordered U, V. Where applicable a flag is specified
to control derivative calculation as follows: 0 – no
derivative; 1 – first derivative; 2 – first, second, and
mixed derivatives. Snap methods require an initial
parameter estimate as input.

Purpose: Determine bounded length of Edge

CADGeom_PointOnEdge(v,e,t,pt,d,d1,d2)

int v – Target region

int e – Target edge entity

double t - Target parameter

double *pt - Output coordinate DATA PERSISTENCE
int d – Derivative flag

double *d1 - Output 1st derivative Primarily, each function listed above is a simple
wrapper of the equivalent CAPrI function. However,
the GridEx framework makes internal use of an
application I/O mechanism provided by CAPrI to save
analysis data in a “Geometry Centric” fashion.

double *d2 – Output 2nd derivative

Purpose: Evaluate a parameter on the Edge

CADGeom_NearestOnEdge(v,e,po,t,pt)

int v – Target region

Currently CAPrI saves a separate file in addition to the
native CAD part file. This file contains auxiliary
information needed by CAPrI. The data is stored
separately so as to prevent modification of the part that
would hinder loading of that file back into the
respective CAD system.

int e – Target edge entity

double *po - Target coordinate

double *t - In/Output Edge parameter

double *pt – Output Edge coord

Purpose: Snap a point to the Edge

CADGeom_PointOnFace(v,f,uv,pt,d,du1,dv1,

 duv,du2,dv2)

int v – Target region

int f – Target face entity

double *uv - Target UV parameters

double *pt - Output coordinates

int d – Derivative flag

double *du1 - Output 1st U derivative

double *dv1 - Output 1st V derivative

double *duv - Output mixed derivative

double *du2 - Output 2nd U derivative

double *dv2 – Output 2nd V derivative

Purpose: Evaluate a point on the Face

5 OF 10
American Institute of Aeronautics and Astronautics Paper 2003-4129

The CAPrI I/O mechanism provides the GridEx
software developers the ability to augment the auxiliary
file with application specific information. Information
local to a specific region is differentiated from
information global to the application (i.e. all regions).
A simple method of registering applications with CAPrI
is supplemented with callback functions that are
invoked by each CAPrI save operation. With each
invocation, the user supplied callback function is
provided: the target region identifier; the target
application name; and a file pointer to which the
developer can safely write data. For reading
application data, a function is provided to return a file
pointer that is positioned appropriately to read the

specified application data. The number of bytes written
is also provided as a checksum. A function is also
available to return the number and names of the
applications that have stored data within a given CAPrI
auxiliary file. It is the responsibility of GridEx to
ensure the integrity of the read and write operations.

The GridEx framework internally uses this mechanism
to save application data for session restarts. As a
consequence, all data gathered and generated by GridEx
is available to downstream applications. This method
of tagging the geometry with analysis data maintains a
geometry based coupling between the various
disciplines within the overall design/analysis process.

GRIDEX OPERATION

Within GridEx, the user may interactively: define the
domain(s) of interest surrounding the subject geometry;
impose grid metric constraints to govern the
distribution of discrete grid points and the resulting
element quality; individually or collectively generate
surface grids for the constituent faces of the solid
model; generate volume grids for the domain(s) of
interest; and visualize the results. Each phase of the
grid generation procedure is organized on a task
oriented tabbed form located on the GUI as shown in
Figure 1. The GUI also includes a 3D view of the
problem space that can be manipulated interactively. A
model tree is provided for the hierarchical organization
of the problem to include boundary condition definition
for output to the analysis software. Additional
operational functionality is provided by means of a
standard application menu bar.

In addition to the API basis of the underlying
framework used to construct GridEx, one of the unique
characteristics of the tool is the interaction between grid
metric constraint specification and grid generation. The
tool allows the user to specify grid metric constraints
via the method of choice by setting appropriate
parameters on the tabbed form. At any time during the
specification, the user may elect to view the localized
impact of the constraints on one or more selected
surface meshes. The inspection requires the grid to be
generated for the subject face(s) and any of the
respective component edges. The grid generation is
limited to those entities specified by the user and is thus
very efficient. This process however may result in
inconsistencies in the surface grid as faces fall out of
sync with their neighbors. To allow for this iterative
flexibility, a mechanism for automated consistency is
built into the application via the support framework.
The method is summarized as follows. The framework

maintains timestamps on the constraints and on each
individual component grid (edge, face, and volume).
As such the grids are aware of their state relative to the
constraint specifications. As a given face grid is
generated, the constituent edges of the face are
assembled into the bounding discretization. This
process includes a check of the current state of each
edge relative to the metric constraints. If an edge mesh

is out of date, it is discretized with the current
constraints before assembly. This operation has the
added benefit that edges common to multiple faces are
only updated once. Likewise, prior to volume grid
generation all component grids are verified against the
current state of the constraints. Component grids that
are consistent with the constraints remain unchanged.
Inconsistent component grids are automatically updated
and assembled for use in the volume grid computation.
This capability greatly reduces the time required to
specify the desired metric constraints and provides
flexibility and automatic consistency to the user.

Figure 1 - GridEx Application

The grid generation methods of GridEx are integrated
into the tool through the aforementioned DSOs. This
allows the user to iterate through the metric
specification process while obtaining visual feedback
on the impact to the desired grid with respect to the
changing constraints. The integration results in
additional time reduction for the overall process.

 GridEx provides the ability to define separate grid
metric specifications from multiple algorithms. These

6 OF 10
American Institute of Aeronautics and Astronautics Paper 2003-4129

can then be individually used in conjunction with the
available meshing algorithms to generate unstructured
tetrahedral meshes directly from the CAD definition.
The manifold solid model access provided by the
CAPrI interface allows for automated topology
extraction that is used to drive the grid generation
procedure. The user is responsible for specifying grid
metric constraints prior to meshing and has the ability
to iteratively generate grids on individual geometric
entities while assessing the local impact of the
constraints on the quality of the resulting mesh as stated
above.

GridEx currently supplies the user with grid metric
constraints using the algorithms found in FELISA3 and
VGRID11. These algorithms may be used seamlessly
and interchangeably between both the FELISA3 and
VGRID2 surface meshing implementations that are
currently provided as DSOs with distribution. These
methods can of course be augmented by user supplied
DSOs. Supplied meshing implementations only
support isotropic surface grid generation however work
is in progress to support anisotropic stretching of
surface and volume elements. Both meshing
implementations have been refactored into a modular
set of API conforming libraries for use within the
framework. The refactoring also included the use of the
API to decouple the meshing algorithms from the
underlying geometry and grid metric specification. As
a result the framework now provides the stated matrix
of capabilities to the GridEx user. The supplied surface
meshing matrix is populated as shown in Table 1 and is
expected to be expanded in the future to support
additional techniques as required.

Table 1 – Surface Grid Generation Capability

In addition to the surface meshing matrix, volume
meshing capabilities supplied add support for the
AFLR34 viscous volume generator.

Side-by-side comparison of results from multiple
metric/meshing algorithms is available within the same
GridEx session. Visualization of grid data is provided
in the interactive 3D window. Grid inspection is aided
via flooded contour plotting of predefined grid quality
measures. These contours can be viewed for any

collection of boundary surfaces and/or “crinkle cuts”
through the volume grid.

 FELISA
Spacing

VGRID
Spacing

FELISA
Mesh X X

VGRID
Mesh X X

a) FELISA Mesh from FELISA Background Grid

b) VGRID Mesh from FELISA Background Grid

c) FELISA Mesh from VGRID Background Grid

d) VGRID Mesh from VGRID Background Grid

Figure 2 - Surface Grid Generation Capability

7 OF 10
American Institute of Aeronautics and Astronautics Paper 2003-4129

The API basis of the GridEx application facilitated the
integration of AFLR3 resulting in a total time to
integrate of less than 12 hours. Modification consisted
of creating an API conforming wrapper routine used to
invoke the standalone AFLR3 executable. The purpose
of the wrapper was to: create a disk file defining the
boundary elements obtained through the API along with
the associated boundary conditions; generate a script to
control AFLR3 execution, also as a disk file; invoke a
system call to execute the script; and finally import of
the AFLR3 volume grid from the disk file generated by
the execution. No refactoring of AFLR3 was possible
for inclusion into the current work. As such, use of the
API for other algorithms, namely grid metric constraint
calculation, could not be accommodated within AFLR3
itself. The definition of grid metric constraints for the
volume grid is confined to that set by the AFLR3
application. The schemes available are based on
interpolation, with various forms of decay, of the grid
metrics derived from the initial boundary triangulation.

Examples of the flexibility afforded the user by the
supplied capabilities is demonstrated in Figure 2. The
figure uses surface grids on the nose of a hypersonic
vehicle to represent each of the four scenarios supplied
for surface grid generation within GridEx. Figure 2a
shows the result of a surface grid computed using the
FELISA meshing algorithm and a traditional FELISA
background grid. Figure 2b shows the same geometry
meshed with the VGRID surface meshing algorithm
and same FELISA background grid. The background
grid used here consists of a line source that extends
along the longitudinal axis of the vehicle and a single
point source, centered in the clustered region of the
figures. The point source was added for the purpose of
demonstration. The point source was defined with a
constant spacing distance 6 times that of the desired
edge length defined for the source. The edge length
doubling distance was specified as 10 times the source
edge length. These parameters are detailed in the
FELISA User’s Guide3. Figures 2c and 2d show the
same progression of meshing algorithm but with a
VGRID background grid controlling grid clustering.
Similarly, a line source is defined along the longitudinal
axis and a point source is defined at the center of the
clustered region. The effect of the point source with the
VGRID background grid decays smoothly with
increasing distance based on a user specified intensity
value. Again, the details of the background grid
definition are found in the literature11.

Boundary triangulations for AFLR3 are generated using
any of the available surface meshing techniques within
GridEx and therefore are geometry conforming. In
general, no new surface nodes are introduced as part of
the volume grid generation. Element connectivity,
however, may be altered as a result of local
reconnection. Surface element connectivity is updated
as part of the volume grid import process. However,
viscous cell growth is allowed on planar symmetry
surfaces. For these faces, new nodes and connectivity
will be generated and both must be updated as part of
the import process.

When comparing surface grids generated with different
meshing algorithms but the same background grid in
Figure 2, only subtle differences are noted. This is
reasonable as both grids adhere to the same metric
constraints defined by the background grid. However,
it is possible that other cases may yield more drastic
differences. Fortunately, the decoupled unstructured
grid generation API provides the flexibility to choose
the appropriate combination best suited for a particular
problem at little or no cost. The reader is reminded
that, as this figure demonstrates, future metric
specification schemes can be added to the application
with no impact to existing meshing algorithms.

CUSTOMIZATION

As stated above, the use of an unstructured grid
generation API allows the user to customize GridEx
operation through the development of meshing
“plug-ins”. This section serves to describe this process.

In order to facilitate the construction of a user defined
DSO, a C language header file with basic definitions is
supplied as part of the standard GridEx distribution.
This header file lists: the known algorithm identities;
masks used for defining and evaluating algorithm
capabilities; return code definitions; and the definition
of the API interfaces listed above. It is the DSO
developer’s responsibility to implement the desired
interface methods with the algorithm of interest.

A recent enhancement of the GridEx application comes
from access to the viscous volume grid generation
capabilities of the AFLR3 software4. AFLR3 is a
standalone volume grid generation package based on
the advancing front local reconnection algorithm and is
capable of generating inviscid as well as viscous
volume grids from an existing boundary triangulation.
The tool has the ability to generate fully tetrahedral or
mixed pentahedral boundary layer grids.

8 OF 10
American Institute of Aeronautics and Astronautics Paper 2003-4129

All DSO libraries used by GridEx must implement the
UG_Identity() and the UG_WhatProvides()
interfaces. The UG_Identity() interface should

simply return an integer representing the unique
identity of the algorithm. During development, the
identity is somewhat arbitrary. However, for proper
interoperability with the supplied DSOs, it should not
duplicate any of the “acknowledged” meshing libraries
contained in the header file. Also, as a best practice,
the new identity should be communicated to the GridEx
developers for inclusion as an “acknowledged”
algorithm thereby avoiding any potential future
conflicts with other DSOs. To reiterate, it is not
necessary to implement all phases of the meshing
process with a given algorithm. To provide a means of
communicating the specific capabilities of the DSO to
GridEx, UG_WhatProvides() returns a constant
comprised of the bitwise combination of the capability
masks supplied in the header. This information will be
used by GridEx to substitute the “default” algorithm for
the missing functionality as described earlier.

Figure 3 - Sample Geometry for use with AFLR3

The remaining responsibility of the DSO developer is to
supply the desired functionality (as defined by the
capabilities mask) by implementing the appropriate
interface(s) followed by the building of a shared object
library. Use of other API functions is encouraged in
order to provide the greatest flexibility to the user. For
example use of the UG_GetSpacing() interface is
favored over a proprietary constraint mechanism in that
it affords the user selection of any of the available
constraint algorithms. Likewise, the case is made for
geometry access and even meshing of entities lower in
the solid modeling hierarchy. Details required to build
the shared object library are operating system
dependent and are therefore not covered here. The
reader is referred to the appropriate documentation for
the target operating system for a description of that
procedure.

Inclusion of the newly created DSO is then conveyed to
GridEx by setting an environment variable that defines
which DSOs should be used by the GridEx session.

EXAMPLES

As a demonstration of GridEx capability we now
consider the application of the tool to two complex test
cases. The first is that of the Langley Glide Back
Booster (LGBB) shown in Figure 3. Geometric
complexities included in this model involve the struts
used to connect the two vehicles as well as cavities
along the wing trailing edge that represent gaps
between flap surfaces. An example AFLR3 viscous
volume grid is shown in Figure 4. The insets show the
smooth transition from the semi-structured viscous
layers to the inviscid region of the grid. Not shown are

the cavities representing the juncture of flap geometry.
Similar grid quality was obtained in these regions. The
boundary triangulation generated for this example was
created using the FELISA surface grid generator and a
FELISA background grid. The geometry was obtained
in the form of a solid model from the Unigraphics
commercial CAD system and processed using the
associated CAPrI driver. The computational domain
was defined by a Boolean subtraction of the geometry
from a “Box” solid primitive created within GridEx and
assumed half plane symmetry. This operation was
carried out within GridEx. The resulting model was
defined topologically with 412 edge and 134 face
entities. This topological information was automatically
extracted during the grid generation procedure. The
entire process required less than 4 hours to complete
following receipt of the geometry definition.

Figure 4 – Sample Viscous Grid from AFLR3

9 OF 10
American Institute of Aeronautics and Astronautics Paper 2003-4129

Figure 5 shows geometry provided for the 2nd AIAA
CFD Drag Prediction Workshop. This geometry of the
DLR-F6 transport configuration adds a pylon and
nacelle to a generic wing/body geometry. The initial
surface mesh and inviscid volume grid were generated
in just under 1 hour following initial receipt of the
geometry in the form of an IGES file. This IGES file
was used to create a solid model to include the defining
domain of interest using the Unigraphics CAD package
and again processed with appropriate the CAPrI driver.
Following the generation of the inviscid grid, an
AFLR3 viscous grid was generated using the same
surface triangulation requiring an additional 20 minutes
to compute. This grid is shown in figure 6.

10 OF 10
American Institute of Aeronautics and Astronautics Paper 2003-4129

CONCLUSION

A new grid generation application has been presented
which is capable of generating grids about complex
configurations suitable for use in high Reynolds
number viscous CFD. The integrated nature of the
GridEx application serves to reduce overall process

involvement providing quality grids in minimal time.
GridEx was designed to be extensible so as to track
technological advances in the field of computational
simulation. A defining component of this design is the
use of Dynamic Shared Object libraries to implement
the key functionality of the tool. As a result the tool is
not only extensible but also customizable by the end
user. The application has been described and
demonstrated through the construction of complex
unstructured tetrahedral volume grids.

ACKNOWLEDGEMENTS

The author wishes to thank the members of the FAAST
team of the NASA Langley Research Center for their
assistance and conversations regarding the current
work. I also wish to extend thanks to Bob Haimes and
Dr. Jaime Peraire of MIT for the exchange of ideas and
generous support of their respective technologies.

REFERENCES

 1Thomas, J. L., et al, “Opportunities for Breakthroughs in
Large-Scale Computational Simulation and Design,” NASA
TM-2002-211747, 2002. 1

 2Parikh, P., Pirzadeh, S., and Löhner, R., “A Package for
3-D Unstructured Grid Generation,” Finite Element Flow
Solution and Flow Field Visualization, NASA CR-182090,
1990.
 3Peiro, J., Peraire, J., and Morgan, K., “FELISA System
Reference Manual and User’s Guide, Volume 1,” University
of Wales Swansea Report, CR/821/94, 1994.
 4Marcum, D. L., “Generation of Unstructured Grids for
Viscous Flow Applications,” AIAA Paper 95-0212, 1995.
 5Pirzadeh, S., “Progress Towards A User-Oriented
Unstructured Viscous Grid Generator,” AIAA Paper 96-0031,
1996.
 6Jones, W. T., “An Open Framework for Unstructured
Grid Generation,” AIAA Paper 2002-3192, 2002.
 7Haimes, R., “Computational Analysis Programming
Interface,” Proceedings of the 6th International Conference on
Numerical Grid Generation in Computational Field
Simulations, pp. 663-672, 1998.
 8Haimes, R., “CAPRI: Computational Analysis
PRogramming Interface User’s Guide”, Massachusetts
Institute of Technology, 2001.
 9Haimes, R., Aftomis, M., J., “On Generating High
Quality Watertight Triangulations Directly from CAD,”
Proceedings of the 8th International Conference on Numerical
Grid Generation in Computational Field Simulations, 2002.
 10Park, M., A., “Adjoint-Based, Three-Dimensional Error
Prediction and Grid Adaptation”, AIAA Paper 2002-3286,
2002.
 11Pirzadeh, S., “Structured Background Grids for
Generation of Unstructured Grids by Advancing-Front
Method”, AIAA Journal 31:2, pp. 257-265, 1993.

Figure 6 – Viscous grid for DLR-F6 Geometry

Figure 5 – DLR-F6 Geometry from 2nd DPW

	GRIDEX – AN INTEGRATED GRID GENERATION PACKAGE FO
	ABSTRACT
	INTRODUCTION
	DESIGN AND DEVELOPMENT
	GEOMETRY ACCESS
	DATA PERSISTENCE
	GRIDEX OPERATION
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

